Merge files using strategies
This commit is contained in:
48
frontend/pages/clustering.py
Normal file
48
frontend/pages/clustering.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES
|
||||
|
||||
st.header("Clustering")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
general_row = st.columns([1, 1])
|
||||
clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES)
|
||||
data_name = general_row[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
|
||||
with st.form("cluster_form"):
|
||||
if isinstance(clustering, KMeansCluster):
|
||||
row1 = st.columns([1, 1, 1])
|
||||
clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters)
|
||||
clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init)
|
||||
clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter)
|
||||
elif isinstance(clustering, DBSCANCluster):
|
||||
clustering.eps = st.slider("eps", min_value=0.0001, max_value=1.0, step=0.1, value=clustering.eps)
|
||||
clustering.min_samples = st.number_input("min_samples", min_value=1, value=clustering.min_samples)
|
||||
|
||||
st.form_submit_button("Launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
result = clustering.run(x)
|
||||
|
||||
st.table(result.statistics)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis")
|
||||
if result.centers is not None:
|
||||
ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
Reference in New Issue
Block a user