correctifs
This commit is contained in:
@@ -3,6 +3,7 @@ from sklearn.linear_model import LogisticRegression
|
|||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.metrics import accuracy_score
|
from sklearn.metrics import accuracy_score
|
||||||
from sklearn.preprocessing import LabelEncoder
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
st.header("Prediction: Classification")
|
st.header("Prediction: Classification")
|
||||||
|
|
||||||
@@ -53,7 +54,7 @@ if "data" in st.session_state:
|
|||||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||||
pred_values.append(value)
|
pred_values.append(value)
|
||||||
|
|
||||||
prediction = model.predict([pred_values])
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
if target_name in label_encoders:
|
if target_name in label_encoders:
|
||||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||||
|
@@ -1,5 +1,6 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
st.header("Prediction: Regression")
|
st.header("Prediction: Regression")
|
||||||
|
|
||||||
@@ -21,7 +22,7 @@ if "data" in st.session_state:
|
|||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
st.subheader("Enter values for prediction")
|
||||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||||
prediction = model.predict([pred_values])
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
st.write("Prediction:", prediction[0])
|
st.write("Prediction:", prediction[0])
|
||||||
else:
|
else:
|
||||||
|
Reference in New Issue
Block a user