prediction de regression terminee
This commit is contained in:
41
frontend/pages/prediction_classification.py
Normal file
41
frontend/pages/prediction_classification.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import streamlit as st
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
|
||||
st.header("Prediction: Classification")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("classification_form"):
|
||||
st.subheader("Random Forest Parameters")
|
||||
|
||||
data_name = st.multiselect("Features", data.select_dtypes(include="object").columns, help="Sélectionnez les caractéristiques pour l'entraînement.")
|
||||
target_name = st.selectbox("Target", data.columns, help="Sélectionnez la variable cible pour l'entraînement.")
|
||||
|
||||
n_estimators = st.number_input("Number of estimators", step=1, min_value=1, value=100, help="Nombre d'arbres dans la forêt.")
|
||||
max_depth = st.number_input("Max depth", step=1, min_value=1, value=10, help="Profondeur maximale des arbres.")
|
||||
|
||||
submit_button = st.form_submit_button('Train and Predict')
|
||||
|
||||
if submit_button and data_name and target_name:
|
||||
le = LabelEncoder()
|
||||
X = data[data_name].apply(le.fit_transform)
|
||||
y = le.fit_transform(data[target_name])
|
||||
|
||||
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=111)
|
||||
model.fit(X, y)
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
|
||||
pred_values = [st.selectbox(f"Value for {feature}", options=data[feature].unique(), key=f"value_{feature}") for feature in data_name]
|
||||
pred_values_encoded = [le.transform([val])[0] for val in pred_values]
|
||||
|
||||
prediction = model.predict([pred_values_encoded])
|
||||
|
||||
prediction_decoded = le.inverse_transform(prediction)
|
||||
|
||||
st.write("Prediction:", prediction_decoded[0])
|
||||
else:
|
||||
st.error("File not loaded")
|
Reference in New Issue
Block a user