add stats
This commit is contained in:
63
frontend/clusters.py
Normal file
63
frontend/clusters.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
from sklearn.cluster import DBSCAN, KMeans
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DBSCAN_cluster():
|
||||||
|
def __init__(self, eps, min_samples,data):
|
||||||
|
self.eps = eps
|
||||||
|
self.min_samples = min_samples
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||||
|
self.labels = dbscan.fit_predict(self.data)
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
for label in unique_labels:
|
||||||
|
if label == -1:
|
||||||
|
continue
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||||
|
stats.append({
|
||||||
|
"cluster": label,
|
||||||
|
"num_points": num_points,
|
||||||
|
"density": density
|
||||||
|
})
|
||||||
|
|
||||||
|
return stats
|
||||||
|
|
||||||
|
|
||||||
|
class KMeans_cluster():
|
||||||
|
def __init__(self, n_clusters, n_init, max_iter, data):
|
||||||
|
self.n_clusters = n_clusters
|
||||||
|
self.n_init = n_init
|
||||||
|
self.max_iter = max_iter
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
self.centers = []
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||||
|
self.labels = kmeans.fit_predict(self.data)
|
||||||
|
self.centers = kmeans.cluster_centers_
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
|
||||||
|
for label in unique_labels:
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
center = self.centers[label]
|
||||||
|
stats.append({
|
||||||
|
'cluster': label,
|
||||||
|
'num_points': num_points,
|
||||||
|
'center': center
|
||||||
|
})
|
||||||
|
return stats
|
@@ -1,10 +1,9 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from sklearn.cluster import DBSCAN
|
from clusters import DBSCAN_cluster
|
||||||
|
|
||||||
st.header("Clustering: dbscan")
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
@@ -17,8 +16,9 @@ if "data" in st.session_state:
|
|||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
||||||
y_dbscan = dbscan.fit_predict(x)
|
y_dbscan = dbscan.run()
|
||||||
|
st.table(dbscan.get_stats())
|
||||||
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
if len(data_name) == 2:
|
if len(data_name) == 2:
|
||||||
@@ -28,8 +28,5 @@ if "data" in st.session_state:
|
|||||||
ax = fig.add_subplot(projection='3d')
|
ax = fig.add_subplot(projection='3d')
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
st.error("file not loaded")
|
st.error("file not loaded")
|
@@ -1,10 +1,9 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from sklearn.cluster import KMeans
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from clusters import KMeans_cluster
|
||||||
|
|
||||||
st.header("Clustering: kmeans")
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
@@ -23,20 +22,21 @@ if "data" in st.session_state:
|
|||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
||||||
y_kmeans = kmeans.fit_predict(x)
|
y_kmeans = kmeans.run()
|
||||||
|
|
||||||
|
st.table(kmeans.get_stats())
|
||||||
|
|
||||||
|
centers = kmeans.centers
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
if len(data_name) == 2:
|
if len(data_name) == 2:
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
centers = kmeans.cluster_centers_
|
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
else:
|
else:
|
||||||
ax = fig.add_subplot(projection='3d')
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
centers = kmeans.cluster_centers_
|
|
||||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user