Support kNN as an imputation method
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from typing import Any, Union
|
||||
|
||||
class DataFrameFunction(ABC):
|
||||
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [DropStrategy(), ModeStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||
if len(other_columns):
|
||||
choices.append(KNNStrategy(other_columns))
|
||||
return choices
|
||||
|
||||
|
||||
@@ -97,6 +101,39 @@ class LinearRegressionStrategy(MVStrategy):
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KNNStrategy(MVStrategy):
|
||||
def __init__(self, training_features: list[str]):
|
||||
self.available_features = training_features
|
||||
self.training_features = training_features
|
||||
self.n_neighbors = 3
|
||||
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
# Remove any training column that have any missing values
|
||||
usable_data = df.dropna(subset=self.training_features)
|
||||
# Select columns to impute from
|
||||
train_data = usable_data.dropna(subset=label)
|
||||
# Create train dataframe
|
||||
x_train = train_data.drop(label, axis=1)
|
||||
y_train = train_data[label]
|
||||
|
||||
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||
|
||||
# Create test dataframe
|
||||
test_data = usable_data[usable_data[label].isnull()]
|
||||
if test_data.empty:
|
||||
return df
|
||||
x_test = test_data.drop(label, axis=1)
|
||||
predicted = reg.predict(x_test)
|
||||
|
||||
# Fill with predicated values and patch the original data
|
||||
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||
df.fillna(usable_data, inplace=True)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "kNN"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
|
Reference in New Issue
Block a user