Support kNN as an imputation method

This commit is contained in:
2024-06-21 15:45:33 +02:00
parent e5f05a2c8a
commit cd0c85ea44
2 changed files with 44 additions and 3 deletions

View File

@@ -1,6 +1,7 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from sklearn.neighbors import KNeighborsClassifier
from typing import Any, Union
class DataFrameFunction(ABC):
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
if len(other_columns):
choices.append(KNNStrategy(other_columns))
return choices
@@ -97,6 +101,39 @@ class LinearRegressionStrategy(MVStrategy):
return "Use linear regression"
class KNNStrategy(MVStrategy):
def __init__(self, training_features: list[str]):
self.available_features = training_features
self.training_features = training_features
self.n_neighbors = 3
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
# Remove any training column that have any missing values
usable_data = df.dropna(subset=self.training_features)
# Select columns to impute from
train_data = usable_data.dropna(subset=label)
# Create train dataframe
x_train = train_data.drop(label, axis=1)
y_train = train_data[label]
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
# Create test dataframe
test_data = usable_data[usable_data[label].isnull()]
if test_data.empty:
return df
x_test = test_data.drop(label, axis=1)
predicted = reg.predict(x_test)
# Fill with predicated values and patch the original data
usable_data[label].fillna(Series(predicted), inplace=True)
df.fillna(usable_data, inplace=True)
return df
def __str__(self) -> str:
return "kNN"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame: