Support kNN as an imputation method
This commit is contained in:
@@ -1,6 +1,7 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from pandas import DataFrame, Series
|
from pandas import DataFrame, Series
|
||||||
from pandas.api.types import is_numeric_dtype
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
from typing import Any, Union
|
from typing import Any, Union
|
||||||
|
|
||||||
class DataFrameFunction(ABC):
|
class DataFrameFunction(ABC):
|
||||||
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
|
|||||||
"""A way to handle missing values in a dataframe."""
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||||
"""Get all the strategies that can be used."""
|
"""Get all the strategies that can be used."""
|
||||||
choices = [DropStrategy(), ModeStrategy()]
|
choices = [DropStrategy(), ModeStrategy()]
|
||||||
if is_numeric_dtype(series):
|
if is_numeric_dtype(series):
|
||||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||||
|
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||||
|
if len(other_columns):
|
||||||
|
choices.append(KNNStrategy(other_columns))
|
||||||
return choices
|
return choices
|
||||||
|
|
||||||
|
|
||||||
@@ -97,6 +101,39 @@ class LinearRegressionStrategy(MVStrategy):
|
|||||||
return "Use linear regression"
|
return "Use linear regression"
|
||||||
|
|
||||||
|
|
||||||
|
class KNNStrategy(MVStrategy):
|
||||||
|
def __init__(self, training_features: list[str]):
|
||||||
|
self.available_features = training_features
|
||||||
|
self.training_features = training_features
|
||||||
|
self.n_neighbors = 3
|
||||||
|
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
# Remove any training column that have any missing values
|
||||||
|
usable_data = df.dropna(subset=self.training_features)
|
||||||
|
# Select columns to impute from
|
||||||
|
train_data = usable_data.dropna(subset=label)
|
||||||
|
# Create train dataframe
|
||||||
|
x_train = train_data.drop(label, axis=1)
|
||||||
|
y_train = train_data[label]
|
||||||
|
|
||||||
|
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||||
|
|
||||||
|
# Create test dataframe
|
||||||
|
test_data = usable_data[usable_data[label].isnull()]
|
||||||
|
if test_data.empty:
|
||||||
|
return df
|
||||||
|
x_test = test_data.drop(label, axis=1)
|
||||||
|
predicted = reg.predict(x_test)
|
||||||
|
|
||||||
|
# Fill with predicated values and patch the original data
|
||||||
|
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||||
|
df.fillna(usable_data, inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "kNN"
|
||||||
|
|
||||||
|
|
||||||
class KeepStrategy(ScalingStrategy):
|
class KeepStrategy(ScalingStrategy):
|
||||||
#@typing.override
|
#@typing.override
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
@@ -1,5 +1,5 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from normstrategy import MVStrategy, ScalingStrategy
|
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.original_data
|
data = st.session_state.original_data
|
||||||
@@ -8,13 +8,17 @@ if "data" in st.session_state:
|
|||||||
for column, series in data.items():
|
for column, series in data.items():
|
||||||
col1, col2 = st.columns(2)
|
col1, col2 = st.columns(2)
|
||||||
missing_count = series.isna().sum()
|
missing_count = series.isna().sum()
|
||||||
choices = MVStrategy.list_available(data, series)
|
choices = MVStrategy.list_available(data, column, series)
|
||||||
option = col1.selectbox(
|
option = col1.selectbox(
|
||||||
f"Missing values of {column} ({missing_count})",
|
f"Missing values of {column} ({missing_count})",
|
||||||
choices,
|
choices,
|
||||||
index=1,
|
index=1,
|
||||||
key=f"mv-{column}",
|
key=f"mv-{column}",
|
||||||
)
|
)
|
||||||
|
if isinstance(option, KNNStrategy):
|
||||||
|
print(option.available_features)
|
||||||
|
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
|
||||||
|
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, value=option.n_neighbors, key=f"neighbors-{column}")
|
||||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||||
data = option.apply(data, column, data[column])
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user