add r2 score
This commit is contained in:
@@ -67,7 +67,6 @@ if "data" in st.session_state:
|
|||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
|
|
||||||
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||||
print([x[0] for x in X.values.tolist()])
|
|
||||||
cm = confusion_matrix(y, y_pred)
|
cm = confusion_matrix(y, y_pred)
|
||||||
|
|
||||||
sns.heatmap(cm, annot=True, fmt="d")
|
sns.heatmap(cm, annot=True, fmt="d")
|
||||||
@@ -75,9 +74,6 @@ if "data" in st.session_state:
|
|||||||
plt.xlabel('Predicted')
|
plt.xlabel('Predicted')
|
||||||
plt.ylabel('True')
|
plt.ylabel('True')
|
||||||
|
|
||||||
st.pyplot(fig)
|
st.pyplot(fig, figsize=(1, 1))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
st.error("File not loaded")
|
st.error("File not loaded")
|
||||||
|
@@ -1,5 +1,6 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from sklearn.metrics import r2_score
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
@@ -21,6 +22,10 @@ if "data" in st.session_state:
|
|||||||
model = LinearRegression()
|
model = LinearRegression()
|
||||||
model.fit(X, y)
|
model.fit(X, y)
|
||||||
|
|
||||||
|
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||||
|
r2 = r2_score(y, y_pred)
|
||||||
|
st.write('R-squared score:', r2)
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
st.subheader("Enter values for prediction")
|
||||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
Reference in New Issue
Block a user