11 Commits

7 changed files with 147 additions and 5 deletions

1
.gitignore vendored
View File

@@ -1 +1,2 @@
__pycache__ __pycache__
.venv

View File

@@ -1,5 +1,6 @@
import pandas as pd import pandas as pd
import streamlit as st import streamlit as st
import codecs
st.set_page_config( st.set_page_config(
page_title="Project Miner", page_title="Project Miner",
@@ -9,10 +10,13 @@ st.set_page_config(
st.title("Home") st.title("Home")
### Exploration ### Exploration
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"]) uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
separator = st.selectbox("Separator", [",", ";", "\\t"])
separator = codecs.getdecoder("unicode_escape")(separator)[0]
has_header = st.checkbox("Has header", value=True)
if uploaded_file is not None: if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file) st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
st.session_state.original_data = st.session_state.data st.session_state.original_data = st.session_state.data
st.success("File loaded successfully!") st.success("File loaded successfully!")

View File

@@ -1,6 +1,7 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pandas import DataFrame, Series from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype from pandas.api.types import is_numeric_dtype
from sklearn.neighbors import KNeighborsClassifier
from typing import Any, Union from typing import Any, Union
class DataFrameFunction(ABC): class DataFrameFunction(ABC):
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe.""" """A way to handle missing values in a dataframe."""
@staticmethod @staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']: def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used.""" """Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()] choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series): if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy())) choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
if len(other_columns):
choices.append(KNNStrategy(other_columns))
return choices return choices
@@ -97,6 +101,43 @@ class LinearRegressionStrategy(MVStrategy):
return "Use linear regression" return "Use linear regression"
class KNNStrategy(MVStrategy):
def __init__(self, training_features: list[str]):
self.available_features = training_features
self.training_features = training_features
self.n_neighbors = 3
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
# Remove any training column that have any missing values
usable_data = df.dropna(subset=self.training_features)
# Select columns to impute from
train_data = usable_data.dropna(subset=label)
# Create train dataframe
x_train = train_data.drop(label, axis=1)
y_train = train_data[label]
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
# Create test dataframe
test_data = usable_data[usable_data[label].isnull()]
if test_data.empty:
return df
x_test = test_data.drop(label, axis=1)
predicted = reg.predict(x_test)
# Fill with predicated values and patch the original data
usable_data[label].fillna(Series(predicted), inplace=True)
df.fillna(usable_data, inplace=True)
return df
def count_max(self, df: DataFrame, label: str) -> int:
usable_data = df.dropna(subset=self.training_features)
return usable_data[label].count()
def __str__(self) -> str:
return "kNN"
class KeepStrategy(ScalingStrategy): class KeepStrategy(ScalingStrategy):
#@typing.override #@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame: def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:

View File

@@ -1,5 +1,5 @@
import streamlit as st import streamlit as st
from normstrategy import MVStrategy, ScalingStrategy from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
if "data" in st.session_state: if "data" in st.session_state:
data = st.session_state.original_data data = st.session_state.original_data
@@ -8,13 +8,16 @@ if "data" in st.session_state:
for column, series in data.items(): for column, series in data.items():
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
missing_count = series.isna().sum() missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, series) choices = MVStrategy.list_available(data, column, series)
option = col1.selectbox( option = col1.selectbox(
f"Missing values of {column} ({missing_count})", f"Missing values of {column} ({missing_count})",
choices, choices,
index=1, index=1,
key=f"mv-{column}", key=f"mv-{column}",
) )
if isinstance(option, KNNStrategy):
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
# Always re-get the series to avoid reusing an invalidated series pointer # Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column]) data = option.apply(data, column, data[column])

View File

@@ -0,0 +1,64 @@
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
st.header("Prediction: Classification")
if "data" in st.session_state:
data = st.session_state.data
with st.form("classification_form"):
st.subheader("Classification Parameters")
data_name = st.multiselect("Features", data.columns)
target_name = st.selectbox("Target", data.columns)
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
label_encoders = {}
for column in X.select_dtypes(include=['object']).columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column])
label_encoders[column] = le
if y.dtype == 'object':
le = LabelEncoder()
y = le.fit_transform(y)
label_encoders[target_name] = le
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
st.subheader("Model Accuracy")
st.write(f"Accuracy on test data: {accuracy:.2f}")
st.subheader("Enter values for prediction")
pred_values = []
for feature in data_name:
if feature in label_encoders:
values = list(label_encoders[feature].classes_)
value = st.selectbox(f"Value for {feature}", values)
value_encoded = label_encoders[feature].transform([value])[0]
pred_values.append(value_encoded)
else:
value = st.number_input(f"Value for {feature}", value=0.0)
pred_values.append(value)
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")

View File

@@ -0,0 +1,29 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
import pandas as pd
st.header("Prediction: Regression")
if "data" in st.session_state:
data = st.session_state.data
with st.form("regression_form"):
st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
model = LinearRegression()
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")