Compare commits
3 Commits
clustering
...
cluster3d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
e48c3bfa50 | ||
![]() |
52cb140746 | ||
![]() |
c1f5e55a0b |
@@ -9,21 +9,27 @@ if "data" in st.session_state:
|
|||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
with st.form("my_form"):
|
with st.form("my_form"):
|
||||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=2)
|
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||||
st.form_submit_button("launch")
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
if len(data_name) == 2:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
y_dbscan = dbscan.fit_predict(x)
|
y_dbscan = dbscan.fit_predict(x)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
fig, ax = plt.subplots(figsize=(12,8))
|
if len(data_name) == 2:
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
st.error("file not loaded")
|
st.error("file not loaded")
|
@@ -11,7 +11,7 @@ if "data" in st.session_state:
|
|||||||
with st.form("my_form"):
|
with st.form("my_form"):
|
||||||
row1 = st.columns([1,1,1])
|
row1 = st.columns([1,1,1])
|
||||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2)
|
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||||
|
|
||||||
row2 = st.columns([1,1])
|
row2 = st.columns([1,1])
|
||||||
@@ -20,16 +20,24 @@ if "data" in st.session_state:
|
|||||||
|
|
||||||
st.form_submit_button("launch")
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
if len(data_name) == 2:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||||
y_kmeans = kmeans.fit_predict(x)
|
y_kmeans = kmeans.fit_predict(x)
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(12,8))
|
fig = plt.figure()
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
if len(data_name) == 2:
|
||||||
centers = kmeans.cluster_centers_
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
Reference in New Issue
Block a user