Compare commits
3 Commits
clustering
...
navigation
Author | SHA1 | Date | |
---|---|---|---|
6644d60fa2 | |||
![]() |
c190656165 | ||
![]() |
fd3d6e3b01 |
@@ -1,29 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from sklearn.cluster import DBSCAN
|
|
||||||
|
|
||||||
st.header("Clustering: dbscan")
|
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("my_form"):
|
|
||||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=2)
|
|
||||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
|
||||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
|
||||||
st.form_submit_button("launch")
|
|
||||||
|
|
||||||
if len(data_name) == 2:
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
|
|
||||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
|
||||||
y_dbscan = dbscan.fit_predict(x)
|
|
||||||
|
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(12,8))
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
|
||||||
st.pyplot(fig)
|
|
||||||
|
|
||||||
else:
|
|
||||||
st.error("file not loaded")
|
|
@@ -1,36 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from sklearn.cluster import KMeans
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
st.header("Clustering: kmeans")
|
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("my_form"):
|
|
||||||
row1 = st.columns([1,1,1])
|
|
||||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
|
||||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2)
|
|
||||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
|
||||||
|
|
||||||
row2 = st.columns([1,1])
|
|
||||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
|
||||||
|
|
||||||
|
|
||||||
st.form_submit_button("launch")
|
|
||||||
|
|
||||||
if len(data_name) == 2:
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
|
|
||||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
|
||||||
y_kmeans = kmeans.fit_predict(x)
|
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(12,8))
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
|
||||||
centers = kmeans.cluster_centers_
|
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
|
||||||
st.pyplot(fig)
|
|
||||||
|
|
||||||
else:
|
|
||||||
st.error("file not loaded")
|
|
Reference in New Issue
Block a user