Compare commits
1 Commits
csv-delimi
...
bastien.ol
Author | SHA1 | Date | |
---|---|---|---|
![]() |
7be9d5a6c8 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,2 +1 @@
|
||||
__pycache__
|
||||
.venv
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
import codecs
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
@@ -10,13 +9,10 @@ st.set_page_config(
|
||||
st.title("Home")
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
|
||||
separator = st.selectbox("Separator", [",", ";", "\\t"])
|
||||
separator = codecs.getdecoder("unicode_escape")(separator)[0]
|
||||
has_header = st.checkbox("Has header", value=True)
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
|
||||
if uploaded_file is not None:
|
||||
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
|
||||
st.session_state.data = pd.read_csv(uploaded_file)
|
||||
st.session_state.original_data = st.session_state.data
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
|
@@ -1,7 +1,6 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from typing import Any, Union
|
||||
|
||||
class DataFrameFunction(ABC):
|
||||
@@ -19,14 +18,11 @@ class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [DropStrategy(), ModeStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||
if len(other_columns):
|
||||
choices.append(KNNStrategy(other_columns))
|
||||
return choices
|
||||
|
||||
|
||||
@@ -101,43 +97,6 @@ class LinearRegressionStrategy(MVStrategy):
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KNNStrategy(MVStrategy):
|
||||
def __init__(self, training_features: list[str]):
|
||||
self.available_features = training_features
|
||||
self.training_features = training_features
|
||||
self.n_neighbors = 3
|
||||
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
# Remove any training column that have any missing values
|
||||
usable_data = df.dropna(subset=self.training_features)
|
||||
# Select columns to impute from
|
||||
train_data = usable_data.dropna(subset=label)
|
||||
# Create train dataframe
|
||||
x_train = train_data.drop(label, axis=1)
|
||||
y_train = train_data[label]
|
||||
|
||||
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||
|
||||
# Create test dataframe
|
||||
test_data = usable_data[usable_data[label].isnull()]
|
||||
if test_data.empty:
|
||||
return df
|
||||
x_test = test_data.drop(label, axis=1)
|
||||
predicted = reg.predict(x_test)
|
||||
|
||||
# Fill with predicated values and patch the original data
|
||||
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||
df.fillna(usable_data, inplace=True)
|
||||
return df
|
||||
|
||||
def count_max(self, df: DataFrame, label: str) -> int:
|
||||
usable_data = df.dropna(subset=self.training_features)
|
||||
return usable_data[label].count()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "kNN"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import streamlit as st
|
||||
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||
from normstrategy import MVStrategy, ScalingStrategy
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.original_data
|
||||
@@ -8,16 +8,13 @@ if "data" in st.session_state:
|
||||
for column, series in data.items():
|
||||
col1, col2 = st.columns(2)
|
||||
missing_count = series.isna().sum()
|
||||
choices = MVStrategy.list_available(data, column, series)
|
||||
choices = MVStrategy.list_available(data, series)
|
||||
option = col1.selectbox(
|
||||
f"Missing values of {column} ({missing_count})",
|
||||
choices,
|
||||
index=1,
|
||||
key=f"mv-{column}",
|
||||
)
|
||||
if isinstance(option, KNNStrategy):
|
||||
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
|
||||
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
|
||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
|
@@ -1,64 +0,0 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
|
||||
st.header("Prediction: Classification")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("classification_form"):
|
||||
st.subheader("Classification Parameters")
|
||||
data_name = st.multiselect("Features", data.columns)
|
||||
target_name = st.selectbox("Target", data.columns)
|
||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
label_encoders = {}
|
||||
for column in X.select_dtypes(include=['object']).columns:
|
||||
le = LabelEncoder()
|
||||
X[column] = le.fit_transform(X[column])
|
||||
label_encoders[column] = le
|
||||
|
||||
if y.dtype == 'object':
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
label_encoders[target_name] = le
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||
|
||||
model = LogisticRegression()
|
||||
model.fit(X_train, y_train)
|
||||
y_pred = model.predict(X_test)
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
|
||||
st.subheader("Model Accuracy")
|
||||
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = []
|
||||
for feature in data_name:
|
||||
if feature in label_encoders:
|
||||
values = list(label_encoders[feature].classes_)
|
||||
value = st.selectbox(f"Value for {feature}", values)
|
||||
value_encoded = label_encoders[feature].transform([value])[0]
|
||||
pred_values.append(value_encoded)
|
||||
else:
|
||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||
pred_values.append(value)
|
||||
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
if target_name in label_encoders:
|
||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
else:
|
||||
st.error("File not loaded")
|
@@ -1,29 +0,0 @@
|
||||
import streamlit as st
|
||||
from sklearn.linear_model import LinearRegression
|
||||
import pandas as pd
|
||||
|
||||
st.header("Prediction: Regression")
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("regression_form"):
|
||||
st.subheader("Linear Regression Parameters")
|
||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||
st.form_submit_button('Train and Predict')
|
||||
|
||||
if data_name and target_name:
|
||||
X = data[data_name]
|
||||
y = data[target_name]
|
||||
|
||||
model = LinearRegression()
|
||||
model.fit(X, y)
|
||||
|
||||
st.subheader("Enter values for prediction")
|
||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||
|
||||
st.write("Prediction:", prediction[0])
|
||||
else:
|
||||
st.error("File not loaded")
|
Reference in New Issue
Block a user