Compare commits
1 Commits
csv-delimi
...
knn
Author | SHA1 | Date | |
---|---|---|---|
06adc742eb |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,2 +1 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
.venv
|
|
||||||
|
@@ -1,6 +1,5 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
import codecs
|
|
||||||
|
|
||||||
st.set_page_config(
|
st.set_page_config(
|
||||||
page_title="Project Miner",
|
page_title="Project Miner",
|
||||||
@@ -10,13 +9,10 @@ st.set_page_config(
|
|||||||
st.title("Home")
|
st.title("Home")
|
||||||
|
|
||||||
### Exploration
|
### Exploration
|
||||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
|
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||||
separator = st.selectbox("Separator", [",", ";", "\\t"])
|
|
||||||
separator = codecs.getdecoder("unicode_escape")(separator)[0]
|
|
||||||
has_header = st.checkbox("Has header", value=True)
|
|
||||||
|
|
||||||
if uploaded_file is not None:
|
if uploaded_file is not None:
|
||||||
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
|
st.session_state.data = pd.read_csv(uploaded_file)
|
||||||
st.session_state.original_data = st.session_state.data
|
st.session_state.original_data = st.session_state.data
|
||||||
st.success("File loaded successfully!")
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
@@ -1,64 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.metrics import accuracy_score
|
|
||||||
from sklearn.preprocessing import LabelEncoder
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
st.header("Prediction: Classification")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("classification_form"):
|
|
||||||
st.subheader("Classification Parameters")
|
|
||||||
data_name = st.multiselect("Features", data.columns)
|
|
||||||
target_name = st.selectbox("Target", data.columns)
|
|
||||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
|
||||||
st.form_submit_button('Train and Predict')
|
|
||||||
|
|
||||||
if data_name and target_name:
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
label_encoders = {}
|
|
||||||
for column in X.select_dtypes(include=['object']).columns:
|
|
||||||
le = LabelEncoder()
|
|
||||||
X[column] = le.fit_transform(X[column])
|
|
||||||
label_encoders[column] = le
|
|
||||||
|
|
||||||
if y.dtype == 'object':
|
|
||||||
le = LabelEncoder()
|
|
||||||
y = le.fit_transform(y)
|
|
||||||
label_encoders[target_name] = le
|
|
||||||
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
|
||||||
|
|
||||||
model = LogisticRegression()
|
|
||||||
model.fit(X_train, y_train)
|
|
||||||
y_pred = model.predict(X_test)
|
|
||||||
accuracy = accuracy_score(y_test, y_pred)
|
|
||||||
|
|
||||||
st.subheader("Model Accuracy")
|
|
||||||
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
|
||||||
pred_values = []
|
|
||||||
for feature in data_name:
|
|
||||||
if feature in label_encoders:
|
|
||||||
values = list(label_encoders[feature].classes_)
|
|
||||||
value = st.selectbox(f"Value for {feature}", values)
|
|
||||||
value_encoded = label_encoders[feature].transform([value])[0]
|
|
||||||
pred_values.append(value_encoded)
|
|
||||||
else:
|
|
||||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
|
||||||
pred_values.append(value)
|
|
||||||
|
|
||||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
||||||
|
|
||||||
if target_name in label_encoders:
|
|
||||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
|
||||||
|
|
||||||
st.write("Prediction:", prediction[0])
|
|
||||||
else:
|
|
||||||
st.error("File not loaded")
|
|
@@ -1,29 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
st.header("Prediction: Regression")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("regression_form"):
|
|
||||||
st.subheader("Linear Regression Parameters")
|
|
||||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
|
||||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
|
||||||
st.form_submit_button('Train and Predict')
|
|
||||||
|
|
||||||
if data_name and target_name:
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
model = LinearRegression()
|
|
||||||
model.fit(X, y)
|
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
|
||||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
|
||||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
||||||
|
|
||||||
st.write("Prediction:", prediction[0])
|
|
||||||
else:
|
|
||||||
st.error("File not loaded")
|
|
Reference in New Issue
Block a user