Compare commits
8 Commits
feature/mi
...
clustering
Author | SHA1 | Date | |
---|---|---|---|
![]() |
34f70b4d79 | ||
![]() |
64cf65a417 | ||
![]() |
d4e33e7367 | ||
![]() |
72dcc8ff1c | ||
![]() |
9fc6d7d2d1 | ||
![]() |
197939555c | ||
![]() |
5bf5f507a5 | ||
![]() |
4ae8512dcb |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1 +0,0 @@
|
|||||||
__pycache__
|
|
@@ -13,7 +13,6 @@ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
|||||||
|
|
||||||
if uploaded_file is not None:
|
if uploaded_file is not None:
|
||||||
st.session_state.data = pd.read_csv(uploaded_file)
|
st.session_state.data = pd.read_csv(uploaded_file)
|
||||||
st.session_state.original_data = st.session_state.data
|
|
||||||
st.success("File loaded successfully!")
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,138 +0,0 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
from pandas import DataFrame, Series
|
|
||||||
from pandas.api.types import is_numeric_dtype
|
|
||||||
from typing import Any, Union
|
|
||||||
|
|
||||||
class DataFrameFunction(ABC):
|
|
||||||
"""A command that may be applied in-place to a dataframe."""
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
"""Apply the current function to the given dataframe, in-place.
|
|
||||||
|
|
||||||
The series is described by its label and dataframe."""
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
class MVStrategy(DataFrameFunction):
|
|
||||||
"""A way to handle missing values in a dataframe."""
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
|
||||||
"""Get all the strategies that can be used."""
|
|
||||||
choices = [DropStrategy(), ModeStrategy()]
|
|
||||||
if is_numeric_dtype(series):
|
|
||||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
|
||||||
return choices
|
|
||||||
|
|
||||||
|
|
||||||
class ScalingStrategy(DataFrameFunction):
|
|
||||||
"""A way to handle missing values in a dataframe."""
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
|
||||||
"""Get all the strategies that can be used."""
|
|
||||||
choices = [KeepStrategy()]
|
|
||||||
if is_numeric_dtype(series):
|
|
||||||
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
|
||||||
if series.sum() != 0:
|
|
||||||
choices.append(UnitLengthStrategy())
|
|
||||||
return choices
|
|
||||||
|
|
||||||
|
|
||||||
class DropStrategy(MVStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
df.dropna(subset=label, inplace=True)
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Drop"
|
|
||||||
|
|
||||||
|
|
||||||
class PositionStrategy(MVStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
series.fillna(self.get_value(series), inplace=True)
|
|
||||||
return df
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def get_value(self, series: Series) -> Any:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class MeanStrategy(PositionStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def get_value(self, series: Series) -> Union[int, float]:
|
|
||||||
return series.mean()
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Use mean"
|
|
||||||
|
|
||||||
|
|
||||||
class MedianStrategy(PositionStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def get_value(self, series: Series) -> Union[int, float]:
|
|
||||||
return series.median()
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Use median"
|
|
||||||
|
|
||||||
|
|
||||||
class ModeStrategy(PositionStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def get_value(self, series: Series) -> Any:
|
|
||||||
return series.mode()[0]
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Use mode"
|
|
||||||
|
|
||||||
|
|
||||||
class LinearRegressionStrategy(MVStrategy):
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
series.interpolate(inplace=True)
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Use linear regression"
|
|
||||||
|
|
||||||
|
|
||||||
class KeepStrategy(ScalingStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "No-op"
|
|
||||||
|
|
||||||
|
|
||||||
class MinMaxStrategy(ScalingStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
minimum = series.min()
|
|
||||||
maximum = series.max()
|
|
||||||
df[label] = (series - minimum) / (maximum - minimum)
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Min-max"
|
|
||||||
|
|
||||||
|
|
||||||
class ZScoreStrategy(ScalingStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
df[label] = (series - series.mean()) / series.std()
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Z-Score"
|
|
||||||
|
|
||||||
|
|
||||||
class UnitLengthStrategy(ScalingStrategy):
|
|
||||||
#@typing.override
|
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
||||||
df[label] = series / series.sum()
|
|
||||||
return df
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "Unit length"
|
|
29
frontend/pages/clustering:_dbscan.py
Normal file
29
frontend/pages/clustering:_dbscan.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
import streamlit as st
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn.cluster import DBSCAN
|
||||||
|
|
||||||
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=2)
|
||||||
|
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||||
|
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) == 2:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
|
y_dbscan = dbscan.fit_predict(x)
|
||||||
|
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=(12,8))
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
36
frontend/pages/clustering:_kmeans.py
Normal file
36
frontend/pages/clustering:_kmeans.py
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
row1 = st.columns([1,1,1])
|
||||||
|
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||||
|
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2)
|
||||||
|
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||||
|
|
||||||
|
row2 = st.columns([1,1])
|
||||||
|
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||||
|
|
||||||
|
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) == 2:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||||
|
y_kmeans = kmeans.fit_predict(x)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=(12,8))
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
@@ -1,32 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from normstrategy import MVStrategy, ScalingStrategy
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.original_data
|
|
||||||
st.session_state.original_data = data.copy()
|
|
||||||
|
|
||||||
for column, series in data.items():
|
|
||||||
col1, col2 = st.columns(2)
|
|
||||||
missing_count = series.isna().sum()
|
|
||||||
choices = MVStrategy.list_available(data, series)
|
|
||||||
option = col1.selectbox(
|
|
||||||
f"Missing values of {column} ({missing_count})",
|
|
||||||
choices,
|
|
||||||
index=1,
|
|
||||||
key=f"mv-{column}",
|
|
||||||
)
|
|
||||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
|
||||||
data = option.apply(data, column, data[column])
|
|
||||||
|
|
||||||
choices = ScalingStrategy.list_available(data, series)
|
|
||||||
option = col2.selectbox(
|
|
||||||
"Scaling",
|
|
||||||
choices,
|
|
||||||
key=f"scaling-{column}",
|
|
||||||
)
|
|
||||||
data = option.apply(data, column, data[column])
|
|
||||||
|
|
||||||
st.write(data)
|
|
||||||
st.session_state.data = data
|
|
||||||
else:
|
|
||||||
st.error("file not loaded")
|
|
Reference in New Issue
Block a user