Compare commits
24 Commits
feature/mi
...
csv-delimi
Author | SHA1 | Date | |
---|---|---|---|
c87308cc21 | |||
d4aeb87f75 | |||
![]() |
3c5f6849f8 | ||
cd0c85ea44 | |||
![]() |
96d390c749 | ||
![]() |
089cc66042 | ||
![]() |
2d1c867bed | ||
![]() |
a914c3f8f9 | ||
![]() |
70641ebca4 | ||
![]() |
e5f05a2c8a | ||
![]() |
972fde561f | ||
![]() |
694ecd0eef | ||
![]() |
e255c67972 | ||
![]() |
e48c3bfa50 | ||
![]() |
52cb140746 | ||
![]() |
c1f5e55a0b | ||
![]() |
34f70b4d79 | ||
![]() |
64cf65a417 | ||
![]() |
d4e33e7367 | ||
![]() |
72dcc8ff1c | ||
![]() |
9fc6d7d2d1 | ||
![]() |
197939555c | ||
![]() |
5bf5f507a5 | ||
![]() |
4ae8512dcb |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1 +1,2 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
|
.venv
|
||||||
|
@@ -1,5 +1,6 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
|
import codecs
|
||||||
|
|
||||||
st.set_page_config(
|
st.set_page_config(
|
||||||
page_title="Project Miner",
|
page_title="Project Miner",
|
||||||
@@ -9,10 +10,13 @@ st.set_page_config(
|
|||||||
st.title("Home")
|
st.title("Home")
|
||||||
|
|
||||||
### Exploration
|
### Exploration
|
||||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
|
||||||
|
separator = st.selectbox("Separator", [",", ";", "\\t"])
|
||||||
|
separator = codecs.getdecoder("unicode_escape")(separator)[0]
|
||||||
|
has_header = st.checkbox("Has header", value=True)
|
||||||
|
|
||||||
if uploaded_file is not None:
|
if uploaded_file is not None:
|
||||||
st.session_state.data = pd.read_csv(uploaded_file)
|
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
|
||||||
st.session_state.original_data = st.session_state.data
|
st.session_state.original_data = st.session_state.data
|
||||||
st.success("File loaded successfully!")
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
@@ -1,6 +1,7 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from pandas import DataFrame, Series
|
from pandas import DataFrame, Series
|
||||||
from pandas.api.types import is_numeric_dtype
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
from typing import Any, Union
|
from typing import Any, Union
|
||||||
|
|
||||||
class DataFrameFunction(ABC):
|
class DataFrameFunction(ABC):
|
||||||
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
|
|||||||
"""A way to handle missing values in a dataframe."""
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||||
"""Get all the strategies that can be used."""
|
"""Get all the strategies that can be used."""
|
||||||
choices = [DropStrategy(), ModeStrategy()]
|
choices = [DropStrategy(), ModeStrategy()]
|
||||||
if is_numeric_dtype(series):
|
if is_numeric_dtype(series):
|
||||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||||
|
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||||
|
if len(other_columns):
|
||||||
|
choices.append(KNNStrategy(other_columns))
|
||||||
return choices
|
return choices
|
||||||
|
|
||||||
|
|
||||||
@@ -97,6 +101,43 @@ class LinearRegressionStrategy(MVStrategy):
|
|||||||
return "Use linear regression"
|
return "Use linear regression"
|
||||||
|
|
||||||
|
|
||||||
|
class KNNStrategy(MVStrategy):
|
||||||
|
def __init__(self, training_features: list[str]):
|
||||||
|
self.available_features = training_features
|
||||||
|
self.training_features = training_features
|
||||||
|
self.n_neighbors = 3
|
||||||
|
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
# Remove any training column that have any missing values
|
||||||
|
usable_data = df.dropna(subset=self.training_features)
|
||||||
|
# Select columns to impute from
|
||||||
|
train_data = usable_data.dropna(subset=label)
|
||||||
|
# Create train dataframe
|
||||||
|
x_train = train_data.drop(label, axis=1)
|
||||||
|
y_train = train_data[label]
|
||||||
|
|
||||||
|
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||||
|
|
||||||
|
# Create test dataframe
|
||||||
|
test_data = usable_data[usable_data[label].isnull()]
|
||||||
|
if test_data.empty:
|
||||||
|
return df
|
||||||
|
x_test = test_data.drop(label, axis=1)
|
||||||
|
predicted = reg.predict(x_test)
|
||||||
|
|
||||||
|
# Fill with predicated values and patch the original data
|
||||||
|
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||||
|
df.fillna(usable_data, inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def count_max(self, df: DataFrame, label: str) -> int:
|
||||||
|
usable_data = df.dropna(subset=self.training_features)
|
||||||
|
return usable_data[label].count()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "kNN"
|
||||||
|
|
||||||
|
|
||||||
class KeepStrategy(ScalingStrategy):
|
class KeepStrategy(ScalingStrategy):
|
||||||
#@typing.override
|
#@typing.override
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
35
frontend/pages/clustering_dbscan.py
Normal file
35
frontend/pages/clustering_dbscan.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import streamlit as st
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn.cluster import DBSCAN
|
||||||
|
|
||||||
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
|
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||||
|
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
|
y_dbscan = dbscan.fit_predict(x)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
44
frontend/pages/clustering_kmeans.py
Normal file
44
frontend/pages/clustering_kmeans.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
row1 = st.columns([1,1,1])
|
||||||
|
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||||
|
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
|
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||||
|
|
||||||
|
row2 = st.columns([1,1])
|
||||||
|
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||||
|
|
||||||
|
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||||
|
y_kmeans = kmeans.fit_predict(x)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
@@ -1,5 +1,5 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from normstrategy import MVStrategy, ScalingStrategy
|
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.original_data
|
data = st.session_state.original_data
|
||||||
@@ -8,13 +8,16 @@ if "data" in st.session_state:
|
|||||||
for column, series in data.items():
|
for column, series in data.items():
|
||||||
col1, col2 = st.columns(2)
|
col1, col2 = st.columns(2)
|
||||||
missing_count = series.isna().sum()
|
missing_count = series.isna().sum()
|
||||||
choices = MVStrategy.list_available(data, series)
|
choices = MVStrategy.list_available(data, column, series)
|
||||||
option = col1.selectbox(
|
option = col1.selectbox(
|
||||||
f"Missing values of {column} ({missing_count})",
|
f"Missing values of {column} ({missing_count})",
|
||||||
choices,
|
choices,
|
||||||
index=1,
|
index=1,
|
||||||
key=f"mv-{column}",
|
key=f"mv-{column}",
|
||||||
)
|
)
|
||||||
|
if isinstance(option, KNNStrategy):
|
||||||
|
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
|
||||||
|
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
|
||||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||||
data = option.apply(data, column, data[column])
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
64
frontend/pages/prediction_classification.py
Normal file
64
frontend/pages/prediction_classification.py
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
st.header("Prediction: Classification")
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("classification_form"):
|
||||||
|
st.subheader("Classification Parameters")
|
||||||
|
data_name = st.multiselect("Features", data.columns)
|
||||||
|
target_name = st.selectbox("Target", data.columns)
|
||||||
|
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||||
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
|
if data_name and target_name:
|
||||||
|
X = data[data_name]
|
||||||
|
y = data[target_name]
|
||||||
|
|
||||||
|
label_encoders = {}
|
||||||
|
for column in X.select_dtypes(include=['object']).columns:
|
||||||
|
le = LabelEncoder()
|
||||||
|
X[column] = le.fit_transform(X[column])
|
||||||
|
label_encoders[column] = le
|
||||||
|
|
||||||
|
if y.dtype == 'object':
|
||||||
|
le = LabelEncoder()
|
||||||
|
y = le.fit_transform(y)
|
||||||
|
label_encoders[target_name] = le
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||||
|
|
||||||
|
model = LogisticRegression()
|
||||||
|
model.fit(X_train, y_train)
|
||||||
|
y_pred = model.predict(X_test)
|
||||||
|
accuracy = accuracy_score(y_test, y_pred)
|
||||||
|
|
||||||
|
st.subheader("Model Accuracy")
|
||||||
|
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||||
|
|
||||||
|
st.subheader("Enter values for prediction")
|
||||||
|
pred_values = []
|
||||||
|
for feature in data_name:
|
||||||
|
if feature in label_encoders:
|
||||||
|
values = list(label_encoders[feature].classes_)
|
||||||
|
value = st.selectbox(f"Value for {feature}", values)
|
||||||
|
value_encoded = label_encoders[feature].transform([value])[0]
|
||||||
|
pred_values.append(value_encoded)
|
||||||
|
else:
|
||||||
|
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||||
|
pred_values.append(value)
|
||||||
|
|
||||||
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
if target_name in label_encoders:
|
||||||
|
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
else:
|
||||||
|
st.error("File not loaded")
|
29
frontend/pages/prediction_regression.py
Normal file
29
frontend/pages/prediction_regression.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
st.header("Prediction: Regression")
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("regression_form"):
|
||||||
|
st.subheader("Linear Regression Parameters")
|
||||||
|
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||||
|
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||||
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
|
if data_name and target_name:
|
||||||
|
X = data[data_name]
|
||||||
|
y = data[target_name]
|
||||||
|
|
||||||
|
model = LinearRegression()
|
||||||
|
model.fit(X, y)
|
||||||
|
|
||||||
|
st.subheader("Enter values for prediction")
|
||||||
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||||
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
else:
|
||||||
|
st.error("File not loaded")
|
Reference in New Issue
Block a user