Compare commits
19 Commits
feature/mi
...
prediction
Author | SHA1 | Date | |
---|---|---|---|
![]() |
089cc66042 | ||
![]() |
2d1c867bed | ||
![]() |
a914c3f8f9 | ||
![]() |
70641ebca4 | ||
![]() |
e5f05a2c8a | ||
![]() |
972fde561f | ||
![]() |
694ecd0eef | ||
![]() |
e255c67972 | ||
![]() |
e48c3bfa50 | ||
![]() |
52cb140746 | ||
![]() |
c1f5e55a0b | ||
![]() |
34f70b4d79 | ||
![]() |
64cf65a417 | ||
![]() |
d4e33e7367 | ||
![]() |
72dcc8ff1c | ||
![]() |
9fc6d7d2d1 | ||
![]() |
197939555c | ||
![]() |
5bf5f507a5 | ||
![]() |
4ae8512dcb |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1 +1,2 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
|
.venv
|
||||||
|
35
frontend/pages/clustering_dbscan.py
Normal file
35
frontend/pages/clustering_dbscan.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import streamlit as st
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn.cluster import DBSCAN
|
||||||
|
|
||||||
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
|
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||||
|
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
|
y_dbscan = dbscan.fit_predict(x)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
44
frontend/pages/clustering_kmeans.py
Normal file
44
frontend/pages/clustering_kmeans.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("my_form"):
|
||||||
|
row1 = st.columns([1,1,1])
|
||||||
|
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||||
|
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
|
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||||
|
|
||||||
|
row2 = st.columns([1,1])
|
||||||
|
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||||
|
|
||||||
|
|
||||||
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||||
|
y_kmeans = kmeans.fit_predict(x)
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
|
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
64
frontend/pages/prediction_classification.py
Normal file
64
frontend/pages/prediction_classification.py
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
st.header("Prediction: Classification")
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("classification_form"):
|
||||||
|
st.subheader("Classification Parameters")
|
||||||
|
data_name = st.multiselect("Features", data.columns)
|
||||||
|
target_name = st.selectbox("Target", data.columns)
|
||||||
|
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||||
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
|
if data_name and target_name:
|
||||||
|
X = data[data_name]
|
||||||
|
y = data[target_name]
|
||||||
|
|
||||||
|
label_encoders = {}
|
||||||
|
for column in X.select_dtypes(include=['object']).columns:
|
||||||
|
le = LabelEncoder()
|
||||||
|
X[column] = le.fit_transform(X[column])
|
||||||
|
label_encoders[column] = le
|
||||||
|
|
||||||
|
if y.dtype == 'object':
|
||||||
|
le = LabelEncoder()
|
||||||
|
y = le.fit_transform(y)
|
||||||
|
label_encoders[target_name] = le
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||||
|
|
||||||
|
model = LogisticRegression()
|
||||||
|
model.fit(X_train, y_train)
|
||||||
|
y_pred = model.predict(X_test)
|
||||||
|
accuracy = accuracy_score(y_test, y_pred)
|
||||||
|
|
||||||
|
st.subheader("Model Accuracy")
|
||||||
|
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||||
|
|
||||||
|
st.subheader("Enter values for prediction")
|
||||||
|
pred_values = []
|
||||||
|
for feature in data_name:
|
||||||
|
if feature in label_encoders:
|
||||||
|
values = list(label_encoders[feature].classes_)
|
||||||
|
value = st.selectbox(f"Value for {feature}", values)
|
||||||
|
value_encoded = label_encoders[feature].transform([value])[0]
|
||||||
|
pred_values.append(value_encoded)
|
||||||
|
else:
|
||||||
|
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||||
|
pred_values.append(value)
|
||||||
|
|
||||||
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
if target_name in label_encoders:
|
||||||
|
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
else:
|
||||||
|
st.error("File not loaded")
|
29
frontend/pages/prediction_regression.py
Normal file
29
frontend/pages/prediction_regression.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
st.header("Prediction: Regression")
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
with st.form("regression_form"):
|
||||||
|
st.subheader("Linear Regression Parameters")
|
||||||
|
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||||
|
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||||
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
|
if data_name and target_name:
|
||||||
|
X = data[data_name]
|
||||||
|
y = data[target_name]
|
||||||
|
|
||||||
|
model = LinearRegression()
|
||||||
|
model.fit(X, y)
|
||||||
|
|
||||||
|
st.subheader("Enter values for prediction")
|
||||||
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||||
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
else:
|
||||||
|
st.error("File not loaded")
|
Reference in New Issue
Block a user