Compare commits
12 Commits
navigation
...
cluster3d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
e48c3bfa50 | ||
![]() |
52cb140746 | ||
![]() |
c1f5e55a0b | ||
![]() |
34f70b4d79 | ||
![]() |
64cf65a417 | ||
![]() |
d4e33e7367 | ||
![]() |
72dcc8ff1c | ||
![]() |
9fc6d7d2d1 | ||
![]() |
197939555c | ||
![]() |
5bf5f507a5 | ||
![]() |
4ae8512dcb | ||
![]() |
ba1aef5727 |
47
frontend/exploration.py
Normal file
47
frontend/exploration.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
layout="wide"
|
||||
)
|
||||
|
||||
st.title("Home")
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
|
||||
if uploaded_file is not None:
|
||||
st.session_state.data = pd.read_csv(uploaded_file)
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
st.write(data.head(10))
|
||||
st.write(data.tail(10))
|
||||
|
||||
st.header("Data Preview")
|
||||
|
||||
st.subheader("First 5 Rows")
|
||||
st.write(data.head())
|
||||
|
||||
st.subheader("Last 5 Rows")
|
||||
st.write(data.tail())
|
||||
|
||||
st.header("Data Summary")
|
||||
|
||||
st.subheader("Basic Information")
|
||||
col1, col2 = st.columns(2)
|
||||
col1.metric("Number of Rows", data.shape[0])
|
||||
col2.metric("Number of Columns", data.shape[1])
|
||||
|
||||
st.write(f"Column Names: {list(data.columns)}")
|
||||
|
||||
st.subheader("Missing Values by Column")
|
||||
missing_values = data.isnull().sum()
|
||||
st.write(missing_values)
|
||||
|
||||
st.subheader("Statistical Summary")
|
||||
st.write(data.describe())
|
||||
|
@@ -1,64 +0,0 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
layout="wide"
|
||||
)
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
|
||||
if uploaded_file:
|
||||
data = pd.read_csv(uploaded_file)
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
st.header("Data Preview")
|
||||
|
||||
st.subheader("First 5 Rows")
|
||||
st.write(data.head())
|
||||
|
||||
st.subheader("Last 5 Rows")
|
||||
st.write(data.tail())
|
||||
|
||||
st.header("Data Summary")
|
||||
|
||||
st.subheader("Basic Information")
|
||||
col1, col2 = st.columns(2)
|
||||
col1.metric("Number of Rows", data.shape[0])
|
||||
col2.metric("Number of Columns", data.shape[1])
|
||||
|
||||
st.write(f"Column Names: {list(data.columns)}")
|
||||
|
||||
st.subheader("Missing Values by Column")
|
||||
missing_values = data.isnull().sum()
|
||||
st.write(missing_values)
|
||||
|
||||
st.subheader("Statistical Summary")
|
||||
st.write(data.describe())
|
||||
|
||||
### Visualization
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f'Histogram of {column_to_plot}')
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel('Frequency')
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include='number')
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f'Boxplot of {column_to_plot}')
|
||||
st.pyplot(fig)
|
35
frontend/pages/clustering:_dbscan.py
Normal file
35
frontend/pages/clustering:_dbscan.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
st.pyplot(fig)
|
||||
|
||||
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
44
frontend/pages/clustering:_kmeans.py
Normal file
44
frontend/pages/clustering:_kmeans.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
with st.form("my_form"):
|
||||
row1 = st.columns([1,1,1])
|
||||
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||
|
||||
row2 = st.columns([1,1])
|
||||
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||
|
||||
|
||||
st.form_submit_button("launch")
|
||||
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
30
frontend/pages/visualization.py
Normal file
30
frontend/pages/visualization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column_to_plot}")
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel("Frequency")
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include="number")
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("file not loaded")
|
Reference in New Issue
Block a user