Compare commits
9 Commits
prediction
...
stat
Author | SHA1 | Date | |
---|---|---|---|
![]() |
c8cf0fe045 | ||
4d82767c68 | |||
![]() |
9cb0d90eb1 | ||
![]() |
3eac3f6b8d | ||
c87308cc21 | |||
d4aeb87f75 | |||
![]() |
3c5f6849f8 | ||
cd0c85ea44 | |||
![]() |
96d390c749 |
44
.drone.yml
Normal file
44
.drone.yml
Normal file
@@ -0,0 +1,44 @@
|
||||
kind: pipeline
|
||||
name: default
|
||||
type: docker
|
||||
|
||||
trigger:
|
||||
event:
|
||||
- push
|
||||
|
||||
steps:
|
||||
- name: lint
|
||||
image: python:3.12
|
||||
commands:
|
||||
- pip install --root-user-action=ignore -r requirements.txt
|
||||
- ruff check .
|
||||
|
||||
- name: docker-image
|
||||
image: plugins/docker
|
||||
settings:
|
||||
dockerfile: Dockerfile
|
||||
registry: hub.codefirst.iut.uca.fr
|
||||
repo: hub.codefirst.iut.uca.fr/bastien.ollier/miner
|
||||
username:
|
||||
from_secret: REGISTRY_USER
|
||||
password:
|
||||
from_secret: REGISTRY_PASSWORD
|
||||
cache_from:
|
||||
- hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
||||
depends_on: [ lint ]
|
||||
|
||||
- name: deploy-miner
|
||||
image: hub.codefirst.iut.uca.fr/clement.freville2/codefirst-dockerproxy-clientdrone:latest
|
||||
settings:
|
||||
image: hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
||||
container: miner
|
||||
command: create
|
||||
overwrite: true
|
||||
admins: bastienollier,clementfreville2,hugopradier2
|
||||
environment:
|
||||
DRONE_REPO_OWNER: bastien.ollier
|
||||
depends_on: [ docker-image ]
|
||||
when:
|
||||
branch:
|
||||
- main
|
||||
- ci/*
|
9
Dockerfile
Normal file
9
Dockerfile
Normal file
@@ -0,0 +1,9 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
EXPOSE 80
|
||||
ENTRYPOINT ["streamlit", "run", "frontend/exploration.py", "--server.port=80", "--server.address=0.0.0.0", "--server.baseUrlPath=/containers/bastienollier-miner"]
|
63
frontend/clusters.py
Normal file
63
frontend/clusters.py
Normal file
@@ -0,0 +1,63 @@
|
||||
from sklearn.cluster import DBSCAN, KMeans
|
||||
import numpy as np
|
||||
|
||||
class DBSCAN_cluster():
|
||||
def __init__(self, eps, min_samples,data):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
self.data = data
|
||||
self.labels = np.array([])
|
||||
|
||||
def run(self):
|
||||
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||
self.labels = dbscan.fit_predict(self.data)
|
||||
return self.labels
|
||||
|
||||
def get_stats(self):
|
||||
unique_labels = np.unique(self.labels)
|
||||
stats = []
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster_points = self.data[self.labels == label]
|
||||
num_points = len(cluster_points)
|
||||
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||
stats.append({
|
||||
"cluster": label,
|
||||
"num_points": num_points,
|
||||
"density": density
|
||||
})
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
class KMeans_cluster():
|
||||
def __init__(self, n_clusters, n_init, max_iter, data):
|
||||
self.n_clusters = n_clusters
|
||||
self.n_init = n_init
|
||||
self.max_iter = max_iter
|
||||
self.data = data
|
||||
self.labels = np.array([])
|
||||
self.centers = []
|
||||
|
||||
def run(self):
|
||||
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||
self.labels = kmeans.fit_predict(self.data)
|
||||
self.centers = kmeans.cluster_centers_
|
||||
return self.labels
|
||||
|
||||
|
||||
def get_stats(self):
|
||||
unique_labels = np.unique(self.labels)
|
||||
stats = []
|
||||
|
||||
for label in unique_labels:
|
||||
cluster_points = self.data[self.labels == label]
|
||||
num_points = len(cluster_points)
|
||||
center = self.centers[label]
|
||||
stats.append({
|
||||
'cluster': label,
|
||||
'num_points': num_points,
|
||||
'center': center
|
||||
})
|
||||
return stats
|
@@ -1,5 +1,6 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
import codecs
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
@@ -9,10 +10,13 @@ st.set_page_config(
|
||||
st.title("Home")
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
|
||||
separator = st.selectbox("Separator", [",", ";", "\\t"])
|
||||
separator = codecs.getdecoder("unicode_escape")(separator)[0]
|
||||
has_header = st.checkbox("Has header", value=True)
|
||||
|
||||
if uploaded_file is not None:
|
||||
st.session_state.data = pd.read_csv(uploaded_file)
|
||||
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
|
||||
st.session_state.original_data = st.session_state.data
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
|
@@ -1,6 +1,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from typing import Any, Union
|
||||
|
||||
class DataFrameFunction(ABC):
|
||||
@@ -18,11 +19,14 @@ class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [DropStrategy(), ModeStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||
if len(other_columns):
|
||||
choices.append(KNNStrategy(other_columns))
|
||||
return choices
|
||||
|
||||
|
||||
@@ -97,6 +101,43 @@ class LinearRegressionStrategy(MVStrategy):
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KNNStrategy(MVStrategy):
|
||||
def __init__(self, training_features: list[str]):
|
||||
self.available_features = training_features
|
||||
self.training_features = training_features
|
||||
self.n_neighbors = 3
|
||||
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
# Remove any training column that have any missing values
|
||||
usable_data = df.dropna(subset=self.training_features)
|
||||
# Select columns to impute from
|
||||
train_data = usable_data.dropna(subset=label)
|
||||
# Create train dataframe
|
||||
x_train = train_data.drop(label, axis=1)
|
||||
y_train = train_data[label]
|
||||
|
||||
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||
|
||||
# Create test dataframe
|
||||
test_data = usable_data[usable_data[label].isnull()]
|
||||
if test_data.empty:
|
||||
return df
|
||||
x_test = test_data.drop(label, axis=1)
|
||||
predicted = reg.predict(x_test)
|
||||
|
||||
# Fill with predicated values and patch the original data
|
||||
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||
df.fillna(usable_data, inplace=True)
|
||||
return df
|
||||
|
||||
def count_max(self, df: DataFrame, label: str) -> int:
|
||||
usable_data = df.dropna(subset=self.training_features)
|
||||
return usable_data[label].count()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "kNN"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
|
@@ -1,10 +1,9 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import DBSCAN
|
||||
from clusters import DBSCAN_cluster
|
||||
|
||||
st.header("Clustering: dbscan")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
@@ -17,8 +16,9 @@ if "data" in st.session_state:
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
y_dbscan = dbscan.fit_predict(x)
|
||||
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
||||
y_dbscan = dbscan.run()
|
||||
st.table(dbscan.get_stats())
|
||||
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
@@ -28,8 +28,5 @@ if "data" in st.session_state:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||
st.pyplot(fig)
|
||||
|
||||
|
||||
|
||||
else:
|
||||
st.error("file not loaded")
|
@@ -1,10 +1,9 @@
|
||||
import streamlit as st
|
||||
from sklearn.cluster import KMeans
|
||||
import matplotlib.pyplot as plt
|
||||
from clusters import KMeans_cluster
|
||||
|
||||
st.header("Clustering: kmeans")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
@@ -23,20 +22,21 @@ if "data" in st.session_state:
|
||||
if len(data_name) >= 2 and len(data_name) <=3:
|
||||
x = data[data_name].to_numpy()
|
||||
|
||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||
y_kmeans = kmeans.fit_predict(x)
|
||||
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
||||
y_kmeans = kmeans.run()
|
||||
|
||||
st.table(kmeans.get_stats())
|
||||
|
||||
centers = kmeans.centers
|
||||
fig = plt.figure()
|
||||
if len(data_name) == 2:
|
||||
ax = fig.add_subplot(projection='rectilinear')
|
||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||
else:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||
centers = kmeans.cluster_centers_
|
||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||
st.pyplot(fig)
|
||||
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import streamlit as st
|
||||
from normstrategy import MVStrategy, ScalingStrategy
|
||||
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.original_data
|
||||
@@ -8,13 +8,16 @@ if "data" in st.session_state:
|
||||
for column, series in data.items():
|
||||
col1, col2 = st.columns(2)
|
||||
missing_count = series.isna().sum()
|
||||
choices = MVStrategy.list_available(data, series)
|
||||
choices = MVStrategy.list_available(data, column, series)
|
||||
option = col1.selectbox(
|
||||
f"Missing values of {column} ({missing_count})",
|
||||
choices,
|
||||
index=1,
|
||||
key=f"mv-{column}",
|
||||
)
|
||||
if isinstance(option, KNNStrategy):
|
||||
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
|
||||
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
|
||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
matplotlib>=3.5.0
|
||||
pandas>=1.5.0
|
||||
seaborn>=0.12.0
|
||||
scikit-learn>=0.23.0
|
||||
streamlit>=1.35.0
|
||||
ruff>=0.4.8
|
Reference in New Issue
Block a user