Compare commits
6 Commits
separation
...
stat_predi
Author | SHA1 | Date | |
---|---|---|---|
![]() |
9bc9e21e45 | ||
![]() |
da1e97f07f | ||
![]() |
27e69b2af8 | ||
![]() |
4054395641 | ||
![]() |
01168f3588 | ||
![]() |
9da6e2d594 |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,2 +1,2 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
*/myenv
|
.venv
|
||||||
|
@@ -1,45 +0,0 @@
|
|||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.metrics import accuracy_score
|
|
||||||
from sklearn.preprocessing import LabelEncoder
|
|
||||||
|
|
||||||
def perform_classification(data, data_name, target_name, test_size):
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
label_encoders = {}
|
|
||||||
for column in X.select_dtypes(include=['object']).columns:
|
|
||||||
le = LabelEncoder()
|
|
||||||
X[column] = le.fit_transform(X[column])
|
|
||||||
label_encoders[column] = le
|
|
||||||
|
|
||||||
if y.dtype == 'object':
|
|
||||||
le = LabelEncoder()
|
|
||||||
y = le.fit_transform(y)
|
|
||||||
label_encoders[target_name] = le
|
|
||||||
else:
|
|
||||||
if y.nunique() > 10:
|
|
||||||
raise ValueError("The target variable seems to be continuous. Please select a categorical target for classification.")
|
|
||||||
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
|
||||||
|
|
||||||
model = LogisticRegression()
|
|
||||||
model.fit(X_train, y_train)
|
|
||||||
y_pred = model.predict(X_test)
|
|
||||||
accuracy = accuracy_score(y_test, y_pred)
|
|
||||||
|
|
||||||
return model, label_encoders, accuracy
|
|
||||||
|
|
||||||
def make_prediction(model, label_encoders, data_name, target_name, input_values):
|
|
||||||
X_new = []
|
|
||||||
for feature, value in zip(data_name, input_values):
|
|
||||||
if feature in label_encoders:
|
|
||||||
value = label_encoders[feature].transform([value])[0]
|
|
||||||
X_new.append(value)
|
|
||||||
|
|
||||||
prediction = model.predict([X_new])
|
|
||||||
|
|
||||||
if target_name in label_encoders:
|
|
||||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
|
||||||
|
|
||||||
return prediction[0]
|
|
@@ -1,16 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
from sklearn.cluster import DBSCAN
|
|
||||||
|
|
||||||
def perform_dbscan_clustering(data, data_name, eps, min_samples):
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
|
||||||
y_dbscan = dbscan.fit_predict(x)
|
|
||||||
|
|
||||||
fig = plt.figure()
|
|
||||||
if len(data_name) == 2:
|
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
|
||||||
else:
|
|
||||||
ax = fig.add_subplot(projection='3d')
|
|
||||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
|
||||||
return fig
|
|
@@ -1,20 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
from sklearn.cluster import KMeans
|
|
||||||
|
|
||||||
def perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter):
|
|
||||||
x = data[data_name].to_numpy()
|
|
||||||
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
|
||||||
y_kmeans = kmeans.fit_predict(x)
|
|
||||||
|
|
||||||
fig = plt.figure()
|
|
||||||
if len(data_name) == 2:
|
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
|
||||||
centers = kmeans.cluster_centers_
|
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
|
||||||
else:
|
|
||||||
ax = fig.add_subplot(projection='3d')
|
|
||||||
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
|
||||||
centers = kmeans.cluster_centers_
|
|
||||||
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
|
||||||
return fig
|
|
@@ -1,18 +0,0 @@
|
|||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
|
|
||||||
def perform_regression(data, data_name, target_name):
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
if not isinstance(y.iloc[0], (int, float)):
|
|
||||||
raise ValueError("The target variable should be numeric (continuous) for regression.")
|
|
||||||
|
|
||||||
model = LinearRegression()
|
|
||||||
model.fit(X, y)
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
def make_prediction(model, feature_names, input_values):
|
|
||||||
prediction = model.predict([input_values])
|
|
||||||
|
|
||||||
return prediction[0]
|
|
@@ -1,16 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
|
|
||||||
def plot_histogram(data, column):
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
ax.hist(data[column].dropna(), bins=20, edgecolor='k')
|
|
||||||
ax.set_title(f"Histogram of {column}")
|
|
||||||
ax.set_xlabel(column)
|
|
||||||
ax.set_ylabel("Frequency")
|
|
||||||
return fig
|
|
||||||
|
|
||||||
def plot_boxplot(data, column):
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
sns.boxplot(data=data, x=column, ax=ax)
|
|
||||||
ax.set_title(f"Boxplot of {column}")
|
|
||||||
return fig
|
|
63
frontend/clusters.py
Normal file
63
frontend/clusters.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
from sklearn.cluster import DBSCAN, KMeans
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DBSCAN_cluster():
|
||||||
|
def __init__(self, eps, min_samples,data):
|
||||||
|
self.eps = eps
|
||||||
|
self.min_samples = min_samples
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
||||||
|
self.labels = dbscan.fit_predict(self.data)
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
for label in unique_labels:
|
||||||
|
if label == -1:
|
||||||
|
continue
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
||||||
|
stats.append({
|
||||||
|
"cluster": label,
|
||||||
|
"num_points": num_points,
|
||||||
|
"density": density
|
||||||
|
})
|
||||||
|
|
||||||
|
return stats
|
||||||
|
|
||||||
|
|
||||||
|
class KMeans_cluster():
|
||||||
|
def __init__(self, n_clusters, n_init, max_iter, data):
|
||||||
|
self.n_clusters = n_clusters
|
||||||
|
self.n_init = n_init
|
||||||
|
self.max_iter = max_iter
|
||||||
|
self.data = data
|
||||||
|
self.labels = np.array([])
|
||||||
|
self.centers = []
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
||||||
|
self.labels = kmeans.fit_predict(self.data)
|
||||||
|
self.centers = kmeans.cluster_centers_
|
||||||
|
return self.labels
|
||||||
|
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
unique_labels = np.unique(self.labels)
|
||||||
|
stats = []
|
||||||
|
|
||||||
|
for label in unique_labels:
|
||||||
|
cluster_points = self.data[self.labels == label]
|
||||||
|
num_points = len(cluster_points)
|
||||||
|
center = self.centers[label]
|
||||||
|
stats.append({
|
||||||
|
'cluster': label,
|
||||||
|
'num_points': num_points,
|
||||||
|
'center': center
|
||||||
|
})
|
||||||
|
return stats
|
@@ -176,4 +176,4 @@ class UnitLengthStrategy(ScalingStrategy):
|
|||||||
return df
|
return df
|
||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
return "Unit length"
|
return "Unit length"
|
@@ -1,22 +1,32 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
import matplotlib.pyplot as plt
|
||||||
import os
|
from clusters import DBSCAN_cluster
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
|
||||||
from dbscan_strategy import perform_dbscan_clustering
|
|
||||||
|
|
||||||
st.header("Clustering: DBSCAN")
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
with st.form("dbscan_form"):
|
with st.form("my_form"):
|
||||||
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
|
||||||
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
min_samples = st.number_input("min_samples", step=1, min_value=1, value=5)
|
||||||
submitted = st.form_submit_button("Launch")
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
if submitted and 2 <= len(data_name) <= 3:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
fig = perform_dbscan_clustering(data, data_name, eps, min_samples)
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
||||||
|
y_dbscan = dbscan.run()
|
||||||
|
st.table(dbscan.get_stats())
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
else:
|
else:
|
||||||
st.error("File not loaded")
|
st.error("file not loaded")
|
@@ -1,26 +1,44 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
import matplotlib.pyplot as plt
|
||||||
import os
|
from clusters import KMeans_cluster
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
|
||||||
from kmeans_strategy import perform_kmeans_clustering
|
|
||||||
|
|
||||||
st.header("Clustering: KMeans")
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
with st.form("kmeans_form"):
|
with st.form("my_form"):
|
||||||
row1 = st.columns([1, 1, 1])
|
row1 = st.columns([1,1,1])
|
||||||
n_clusters = row1[0].selectbox("Number of clusters", range(1, data.shape[0]))
|
n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0]))
|
||||||
data_name = row1[1].multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3)
|
data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3)
|
||||||
n_init = row1[2].number_input("n_init", step=1, min_value=1)
|
n_init = row1[2].number_input("n_init",step=1,min_value=1)
|
||||||
|
|
||||||
row2 = st.columns([1, 1])
|
row2 = st.columns([1,1])
|
||||||
max_iter = row2[0].number_input("max_iter", step=1, min_value=1)
|
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
|
||||||
submitted = st.form_submit_button("Launch")
|
|
||||||
|
|
||||||
if submitted and 2 <= len(data_name) <= 3:
|
|
||||||
fig = perform_kmeans_clustering(data, data_name, n_clusters, n_init, max_iter)
|
st.form_submit_button("launch")
|
||||||
|
|
||||||
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
|
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
||||||
|
y_kmeans = kmeans.run()
|
||||||
|
|
||||||
|
st.table(kmeans.get_stats())
|
||||||
|
|
||||||
|
centers = kmeans.centers
|
||||||
|
fig = plt.figure()
|
||||||
|
if len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
st.error("File not loaded")
|
st.error("file not loaded")
|
||||||
|
@@ -1,8 +1,5 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||||
import os
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
|
||||||
from norm_strategy import MVStrategy, ScalingStrategy, KNNStrategy
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.original_data
|
data = st.session_state.original_data
|
||||||
@@ -35,4 +32,4 @@ if "data" in st.session_state:
|
|||||||
st.write(data)
|
st.write(data)
|
||||||
st.session_state.data = data
|
st.session_state.data = data
|
||||||
else:
|
else:
|
||||||
st.error("file not loaded")
|
st.error("file not loaded")
|
||||||
|
@@ -1,8 +1,11 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
from sklearn.linear_model import LogisticRegression
|
||||||
import os
|
from sklearn.model_selection import train_test_split
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
from sklearn.metrics import accuracy_score,confusion_matrix
|
||||||
from classification_strategy import perform_classification, make_prediction
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
st.header("Prediction: Classification")
|
st.header("Prediction: Classification")
|
||||||
|
|
||||||
@@ -11,38 +14,66 @@ if "data" in st.session_state:
|
|||||||
|
|
||||||
with st.form("classification_form"):
|
with st.form("classification_form"):
|
||||||
st.subheader("Classification Parameters")
|
st.subheader("Classification Parameters")
|
||||||
data_name = st.multiselect("Features", data.columns, key="classification_features")
|
data_name = st.multiselect("Features", data.columns)
|
||||||
target_name = st.selectbox("Target", data.columns, key="classification_target")
|
target_name = st.selectbox("Target", data.columns)
|
||||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1, key="classification_test_size")
|
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
||||||
submitted = st.form_submit_button('Train and Predict')
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
if submitted and data_name and target_name:
|
if data_name and target_name:
|
||||||
try:
|
X = data[data_name]
|
||||||
model, label_encoders, accuracy = perform_classification(data, data_name, target_name, test_size)
|
y = data[target_name]
|
||||||
st.session_state.classification_model = model
|
|
||||||
st.session_state.classification_label_encoders = label_encoders
|
label_encoders = {}
|
||||||
st.session_state.classification_accuracy = accuracy
|
for column in X.select_dtypes(include=['object']).columns:
|
||||||
st.session_state.classification_features_selected = data_name
|
le = LabelEncoder()
|
||||||
st.session_state.classification_target_selected = target_name
|
X[column] = le.fit_transform(X[column])
|
||||||
except ValueError as e:
|
label_encoders[column] = le
|
||||||
st.error(e)
|
|
||||||
|
if y.dtype == 'object':
|
||||||
|
le = LabelEncoder()
|
||||||
|
y = le.fit_transform(y)
|
||||||
|
label_encoders[target_name] = le
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
||||||
|
|
||||||
|
model = LogisticRegression()
|
||||||
|
model.fit(X_train, y_train)
|
||||||
|
y_pred = model.predict(X_test)
|
||||||
|
accuracy = accuracy_score(y_test, y_pred)
|
||||||
|
|
||||||
if "classification_model" in st.session_state:
|
|
||||||
st.subheader("Model Accuracy")
|
st.subheader("Model Accuracy")
|
||||||
st.write(f"Accuracy on test data: {st.session_state.classification_accuracy:.2f}")
|
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
st.subheader("Enter values for prediction")
|
||||||
input_values = []
|
pred_values = []
|
||||||
for feature in st.session_state.classification_features_selected:
|
for feature in data_name:
|
||||||
if feature in st.session_state.classification_label_encoders:
|
if feature in label_encoders:
|
||||||
values = list(st.session_state.classification_label_encoders[feature].classes_)
|
values = list(label_encoders[feature].classes_)
|
||||||
value = st.selectbox(f"Value for {feature}", values, key=f"classification_input_{feature}")
|
value = st.selectbox(f"Value for {feature}", values)
|
||||||
|
value_encoded = label_encoders[feature].transform([value])[0]
|
||||||
|
pred_values.append(value_encoded)
|
||||||
else:
|
else:
|
||||||
value = st.number_input(f"Value for {feature}", value=0.0, key=f"classification_input_{feature}")
|
value = st.number_input(f"Value for {feature}", value=0.0)
|
||||||
input_values.append(value)
|
pred_values.append(value)
|
||||||
|
|
||||||
prediction = make_prediction(st.session_state.classification_model, st.session_state.classification_label_encoders, st.session_state.classification_features_selected, st.session_state.classification_target_selected, input_values)
|
|
||||||
|
|
||||||
st.write("Prediction:", prediction)
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
if target_name in label_encoders:
|
||||||
|
prediction = label_encoders[target_name].inverse_transform(prediction)
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
|
||||||
|
if len(data_name) == 1:
|
||||||
|
fig = plt.figure()
|
||||||
|
|
||||||
|
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||||
|
cm = confusion_matrix(y, y_pred)
|
||||||
|
|
||||||
|
sns.heatmap(cm, annot=True, fmt="d")
|
||||||
|
|
||||||
|
plt.xlabel('Predicted')
|
||||||
|
plt.ylabel('True')
|
||||||
|
|
||||||
|
st.pyplot(fig, figsize=(1, 1))
|
||||||
else:
|
else:
|
||||||
st.error("File not loaded")
|
st.error("File not loaded")
|
||||||
|
@@ -1,8 +1,8 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
from sklearn.linear_model import LinearRegression
|
||||||
import os
|
from sklearn.metrics import r2_score
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
import pandas as pd
|
||||||
from regression_strategy import perform_regression, make_prediction
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
st.header("Prediction: Regression")
|
st.header("Prediction: Regression")
|
||||||
|
|
||||||
@@ -11,24 +11,53 @@ if "data" in st.session_state:
|
|||||||
|
|
||||||
with st.form("regression_form"):
|
with st.form("regression_form"):
|
||||||
st.subheader("Linear Regression Parameters")
|
st.subheader("Linear Regression Parameters")
|
||||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns, key="regression_features")
|
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
||||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns, key="regression_target")
|
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
||||||
submitted = st.form_submit_button('Train and Predict')
|
st.form_submit_button('Train and Predict')
|
||||||
|
|
||||||
if submitted and data_name and target_name:
|
if data_name and target_name:
|
||||||
try:
|
X = data[data_name]
|
||||||
model = perform_regression(data, data_name, target_name)
|
y = data[target_name]
|
||||||
st.session_state.regression_model = model
|
|
||||||
st.session_state.regression_features_selected = data_name
|
|
||||||
st.session_state.regression_target_selected = target_name
|
|
||||||
except ValueError as e:
|
|
||||||
st.error(e)
|
|
||||||
|
|
||||||
if "regression_model" in st.session_state:
|
model = LinearRegression()
|
||||||
|
model.fit(X, y)
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
st.subheader("Enter values for prediction")
|
||||||
input_values = [st.number_input(f"Value for {feature}", value=0.0, key=f"regression_input_{feature}") for feature in st.session_state.regression_features_selected]
|
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
||||||
prediction = make_prediction(st.session_state.regression_model, st.session_state.regression_features_selected, input_values)
|
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
||||||
|
|
||||||
|
st.write("Prediction:", prediction[0])
|
||||||
|
|
||||||
|
fig = plt.figure()
|
||||||
|
dataframe_sorted = pd.concat([X, y], axis=1).sort_values(by=data_name)
|
||||||
|
|
||||||
|
if len(data_name) == 1:
|
||||||
|
y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()]
|
||||||
|
r2 = r2_score(y, y_pred)
|
||||||
|
st.write('R-squared score:', r2)
|
||||||
|
|
||||||
|
X = dataframe_sorted[data_name[0]]
|
||||||
|
y = dataframe_sorted[target_name]
|
||||||
|
|
||||||
|
prediction_array_y = [
|
||||||
|
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i]]], columns=data_name))[0]
|
||||||
|
for i in range(dataframe_sorted.shape[0])
|
||||||
|
]
|
||||||
|
|
||||||
|
plt.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[target_name], color='b')
|
||||||
|
plt.plot(dataframe_sorted[data_name[0]], prediction_array_y, color='r')
|
||||||
|
elif len(data_name) == 2:
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
|
||||||
|
prediction_array_y = [
|
||||||
|
model.predict(pd.DataFrame([[dataframe_sorted[data_name[0]].iloc[i], dataframe_sorted[data_name[1]].iloc[i]]], columns=data_name))[0]
|
||||||
|
for i in range(dataframe_sorted.shape[0])
|
||||||
|
]
|
||||||
|
|
||||||
|
ax.scatter(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], dataframe_sorted[target_name], color='b')
|
||||||
|
ax.plot(dataframe_sorted[data_name[0]], dataframe_sorted[data_name[1]], prediction_array_y, color='r')
|
||||||
|
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
st.write("Prediction:", prediction)
|
|
||||||
else:
|
else:
|
||||||
st.error("File not loaded")
|
st.error("File not loaded")
|
||||||
|
@@ -1,25 +1,30 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import sys
|
import matplotlib.pyplot as plt
|
||||||
import os
|
import seaborn as sns
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../../backend')))
|
|
||||||
from visualization_strategy import plot_histogram, plot_boxplot
|
|
||||||
|
|
||||||
st.header("Data Visualization")
|
st.header("Data Visualization")
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
st.subheader("Histogram")
|
st.subheader("Histogram")
|
||||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||||
if column_to_plot:
|
if column_to_plot:
|
||||||
fig = plot_histogram(data, column_to_plot)
|
fig, ax = plt.subplots()
|
||||||
|
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||||
|
ax.set_title(f"Histogram of {column_to_plot}")
|
||||||
|
ax.set_xlabel(column_to_plot)
|
||||||
|
ax.set_ylabel("Frequency")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
st.subheader("Boxplot")
|
st.subheader("Boxplot")
|
||||||
dataNumeric = data.select_dtypes(include="number")
|
dataNumeric = data.select_dtypes(include="number")
|
||||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||||
if column_to_plot:
|
if column_to_plot:
|
||||||
fig = plot_boxplot(data, column_to_plot)
|
fig, ax = plt.subplots()
|
||||||
|
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||||
|
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
else:
|
else:
|
||||||
st.error("file not loaded")
|
st.error("file not loaded")
|
Reference in New Issue
Block a user