Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
06adc742eb |
44
.drone.yml
44
.drone.yml
@@ -1,44 +0,0 @@
|
|||||||
kind: pipeline
|
|
||||||
name: default
|
|
||||||
type: docker
|
|
||||||
|
|
||||||
trigger:
|
|
||||||
event:
|
|
||||||
- push
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: lint
|
|
||||||
image: python:3.12
|
|
||||||
commands:
|
|
||||||
- pip install --root-user-action=ignore -r requirements.txt
|
|
||||||
- ruff check .
|
|
||||||
|
|
||||||
- name: docker-image
|
|
||||||
image: plugins/docker
|
|
||||||
settings:
|
|
||||||
dockerfile: Dockerfile
|
|
||||||
registry: hub.codefirst.iut.uca.fr
|
|
||||||
repo: hub.codefirst.iut.uca.fr/bastien.ollier/miner
|
|
||||||
username:
|
|
||||||
from_secret: REGISTRY_USER
|
|
||||||
password:
|
|
||||||
from_secret: REGISTRY_PASSWORD
|
|
||||||
cache_from:
|
|
||||||
- hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
|
||||||
depends_on: [ lint ]
|
|
||||||
|
|
||||||
- name: deploy-miner
|
|
||||||
image: hub.codefirst.iut.uca.fr/clement.freville2/codefirst-dockerproxy-clientdrone:latest
|
|
||||||
settings:
|
|
||||||
image: hub.codefirst.iut.uca.fr/bastien.ollier/miner:latest
|
|
||||||
container: miner
|
|
||||||
command: create
|
|
||||||
overwrite: true
|
|
||||||
admins: bastienollier,clementfreville2,hugopradier2
|
|
||||||
environment:
|
|
||||||
DRONE_REPO_OWNER: bastien.ollier
|
|
||||||
depends_on: [ docker-image ]
|
|
||||||
when:
|
|
||||||
branch:
|
|
||||||
- main
|
|
||||||
- ci/*
|
|
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,2 +1 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
.venv
|
|
||||||
|
@@ -1,9 +0,0 @@
|
|||||||
FROM python:3.12-slim
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
RUN pip3 install -r requirements.txt
|
|
||||||
|
|
||||||
EXPOSE 80
|
|
||||||
ENTRYPOINT ["streamlit", "run", "frontend/exploration.py", "--server.port=80", "--server.address=0.0.0.0", "--server.baseUrlPath=/containers/bastienollier-miner"]
|
|
@@ -1,63 +0,0 @@
|
|||||||
from sklearn.cluster import DBSCAN, KMeans
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
class DBSCAN_cluster():
|
|
||||||
def __init__(self, eps, min_samples,data):
|
|
||||||
self.eps = eps
|
|
||||||
self.min_samples = min_samples
|
|
||||||
self.data = data
|
|
||||||
self.labels = np.array([])
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
|
|
||||||
self.labels = dbscan.fit_predict(self.data)
|
|
||||||
return self.labels
|
|
||||||
|
|
||||||
def get_stats(self):
|
|
||||||
unique_labels = np.unique(self.labels)
|
|
||||||
stats = []
|
|
||||||
for label in unique_labels:
|
|
||||||
if label == -1:
|
|
||||||
continue
|
|
||||||
cluster_points = self.data[self.labels == label]
|
|
||||||
num_points = len(cluster_points)
|
|
||||||
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
|
|
||||||
stats.append({
|
|
||||||
"cluster": label,
|
|
||||||
"num_points": num_points,
|
|
||||||
"density": density
|
|
||||||
})
|
|
||||||
|
|
||||||
return stats
|
|
||||||
|
|
||||||
|
|
||||||
class KMeans_cluster():
|
|
||||||
def __init__(self, n_clusters, n_init, max_iter, data):
|
|
||||||
self.n_clusters = n_clusters
|
|
||||||
self.n_init = n_init
|
|
||||||
self.max_iter = max_iter
|
|
||||||
self.data = data
|
|
||||||
self.labels = np.array([])
|
|
||||||
self.centers = []
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
|
|
||||||
self.labels = kmeans.fit_predict(self.data)
|
|
||||||
self.centers = kmeans.cluster_centers_
|
|
||||||
return self.labels
|
|
||||||
|
|
||||||
|
|
||||||
def get_stats(self):
|
|
||||||
unique_labels = np.unique(self.labels)
|
|
||||||
stats = []
|
|
||||||
|
|
||||||
for label in unique_labels:
|
|
||||||
cluster_points = self.data[self.labels == label]
|
|
||||||
num_points = len(cluster_points)
|
|
||||||
center = self.centers[label]
|
|
||||||
stats.append({
|
|
||||||
'cluster': label,
|
|
||||||
'num_points': num_points,
|
|
||||||
'center': center
|
|
||||||
})
|
|
||||||
return stats
|
|
@@ -1,6 +1,5 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
import codecs
|
|
||||||
|
|
||||||
st.set_page_config(
|
st.set_page_config(
|
||||||
page_title="Project Miner",
|
page_title="Project Miner",
|
||||||
@@ -10,13 +9,10 @@ st.set_page_config(
|
|||||||
st.title("Home")
|
st.title("Home")
|
||||||
|
|
||||||
### Exploration
|
### Exploration
|
||||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv", "tsv"])
|
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||||
separator = st.selectbox("Separator", [",", ";", "\\t"])
|
|
||||||
separator = codecs.getdecoder("unicode_escape")(separator)[0]
|
|
||||||
has_header = st.checkbox("Has header", value=True)
|
|
||||||
|
|
||||||
if uploaded_file is not None:
|
if uploaded_file is not None:
|
||||||
st.session_state.data = pd.read_csv(uploaded_file, sep=separator, header=0 if has_header else 1)
|
st.session_state.data = pd.read_csv(uploaded_file)
|
||||||
st.session_state.original_data = st.session_state.data
|
st.session_state.original_data = st.session_state.data
|
||||||
st.success("File loaded successfully!")
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
@@ -1,9 +1,10 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from clusters import DBSCAN_cluster
|
from sklearn.cluster import DBSCAN
|
||||||
|
|
||||||
st.header("Clustering: dbscan")
|
st.header("Clustering: dbscan")
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
@@ -16,9 +17,8 @@ if "data" in st.session_state:
|
|||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
dbscan = DBSCAN_cluster(eps,min_samples,x)
|
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
y_dbscan = dbscan.run()
|
y_dbscan = dbscan.fit_predict(x)
|
||||||
st.table(dbscan.get_stats())
|
|
||||||
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
if len(data_name) == 2:
|
if len(data_name) == 2:
|
||||||
@@ -28,5 +28,8 @@ if "data" in st.session_state:
|
|||||||
ax = fig.add_subplot(projection='3d')
|
ax = fig.add_subplot(projection='3d')
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
st.error("file not loaded")
|
st.error("file not loaded")
|
@@ -1,9 +1,10 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from clusters import KMeans_cluster
|
|
||||||
|
|
||||||
st.header("Clustering: kmeans")
|
st.header("Clustering: kmeans")
|
||||||
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
|
|
||||||
@@ -22,21 +23,20 @@ if "data" in st.session_state:
|
|||||||
if len(data_name) >= 2 and len(data_name) <=3:
|
if len(data_name) >= 2 and len(data_name) <=3:
|
||||||
x = data[data_name].to_numpy()
|
x = data[data_name].to_numpy()
|
||||||
|
|
||||||
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
|
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
|
||||||
y_kmeans = kmeans.run()
|
y_kmeans = kmeans.fit_predict(x)
|
||||||
|
|
||||||
st.table(kmeans.get_stats())
|
|
||||||
|
|
||||||
centers = kmeans.centers
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
if len(data_name) == 2:
|
if len(data_name) == 2:
|
||||||
ax = fig.add_subplot(projection='rectilinear')
|
ax = fig.add_subplot(projection='rectilinear')
|
||||||
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
|
||||||
else:
|
else:
|
||||||
ax = fig.add_subplot(projection='3d')
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
|
||||||
|
centers = kmeans.cluster_centers_
|
||||||
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
|
||||||
st.pyplot(fig)
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
@@ -1,64 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.metrics import accuracy_score
|
|
||||||
from sklearn.preprocessing import LabelEncoder
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
st.header("Prediction: Classification")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("classification_form"):
|
|
||||||
st.subheader("Classification Parameters")
|
|
||||||
data_name = st.multiselect("Features", data.columns)
|
|
||||||
target_name = st.selectbox("Target", data.columns)
|
|
||||||
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
|
|
||||||
st.form_submit_button('Train and Predict')
|
|
||||||
|
|
||||||
if data_name and target_name:
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
label_encoders = {}
|
|
||||||
for column in X.select_dtypes(include=['object']).columns:
|
|
||||||
le = LabelEncoder()
|
|
||||||
X[column] = le.fit_transform(X[column])
|
|
||||||
label_encoders[column] = le
|
|
||||||
|
|
||||||
if y.dtype == 'object':
|
|
||||||
le = LabelEncoder()
|
|
||||||
y = le.fit_transform(y)
|
|
||||||
label_encoders[target_name] = le
|
|
||||||
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
|
||||||
|
|
||||||
model = LogisticRegression()
|
|
||||||
model.fit(X_train, y_train)
|
|
||||||
y_pred = model.predict(X_test)
|
|
||||||
accuracy = accuracy_score(y_test, y_pred)
|
|
||||||
|
|
||||||
st.subheader("Model Accuracy")
|
|
||||||
st.write(f"Accuracy on test data: {accuracy:.2f}")
|
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
|
||||||
pred_values = []
|
|
||||||
for feature in data_name:
|
|
||||||
if feature in label_encoders:
|
|
||||||
values = list(label_encoders[feature].classes_)
|
|
||||||
value = st.selectbox(f"Value for {feature}", values)
|
|
||||||
value_encoded = label_encoders[feature].transform([value])[0]
|
|
||||||
pred_values.append(value_encoded)
|
|
||||||
else:
|
|
||||||
value = st.number_input(f"Value for {feature}", value=0.0)
|
|
||||||
pred_values.append(value)
|
|
||||||
|
|
||||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
||||||
|
|
||||||
if target_name in label_encoders:
|
|
||||||
prediction = label_encoders[target_name].inverse_transform(prediction)
|
|
||||||
|
|
||||||
st.write("Prediction:", prediction[0])
|
|
||||||
else:
|
|
||||||
st.error("File not loaded")
|
|
@@ -1,29 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
st.header("Prediction: Regression")
|
|
||||||
|
|
||||||
if "data" in st.session_state:
|
|
||||||
data = st.session_state.data
|
|
||||||
|
|
||||||
with st.form("regression_form"):
|
|
||||||
st.subheader("Linear Regression Parameters")
|
|
||||||
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
|
|
||||||
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
|
|
||||||
st.form_submit_button('Train and Predict')
|
|
||||||
|
|
||||||
if data_name and target_name:
|
|
||||||
X = data[data_name]
|
|
||||||
y = data[target_name]
|
|
||||||
|
|
||||||
model = LinearRegression()
|
|
||||||
model.fit(X, y)
|
|
||||||
|
|
||||||
st.subheader("Enter values for prediction")
|
|
||||||
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
|
|
||||||
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
|
|
||||||
|
|
||||||
st.write("Prediction:", prediction[0])
|
|
||||||
else:
|
|
||||||
st.error("File not loaded")
|
|
@@ -1,6 +0,0 @@
|
|||||||
matplotlib>=3.5.0
|
|
||||||
pandas>=1.5.0
|
|
||||||
seaborn>=0.12.0
|
|
||||||
scikit-learn>=0.23.0
|
|
||||||
streamlit>=1.35.0
|
|
||||||
ruff>=0.4.8
|
|
Reference in New Issue
Block a user