Add scaling strategies
This commit is contained in:
@@ -3,16 +3,20 @@ from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from typing import Any, Union
|
||||
|
||||
class MVStrategy(ABC):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
class DataFrameFunction(ABC):
|
||||
"""A command that may be applied in-place to a dataframe."""
|
||||
|
||||
@abstractmethod
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
"""Apply the current strategy to the given series.
|
||||
"""Apply the current function to the given dataframe, in-place.
|
||||
|
||||
The series is described by its label and dataframe."""
|
||||
return df
|
||||
|
||||
|
||||
class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
@@ -22,6 +26,20 @@ class MVStrategy(ABC):
|
||||
return choices
|
||||
|
||||
|
||||
class ScalingStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [KeepStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||
if series.sum() != 0:
|
||||
choices.append(UnitLengthStrategy())
|
||||
return choices
|
||||
|
||||
|
||||
class DropStrategy(MVStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
@@ -77,3 +95,44 @@ class LinearRegressionStrategy(MVStrategy):
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "No-op"
|
||||
|
||||
|
||||
class MinMaxStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
minimum = series.min()
|
||||
maximum = series.max()
|
||||
df[label] = (series - minimum) / (maximum - minimum)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Min-max"
|
||||
|
||||
|
||||
class ZScoreStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = (series - series.mean()) / series.std()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Z-Score"
|
||||
|
||||
|
||||
class UnitLengthStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = series / series.sum()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Unit length"
|
@@ -1,14 +1,15 @@
|
||||
import streamlit as st
|
||||
from mvstrategy import MVStrategy
|
||||
from normstrategy import MVStrategy, ScalingStrategy
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
st.session_state.data = data.copy()
|
||||
|
||||
for column, series in data.items():
|
||||
col1, col2 = st.columns(2)
|
||||
missing_count = series.isna().sum()
|
||||
choices = MVStrategy.list_available(data, series)
|
||||
option = st.selectbox(
|
||||
option = col1.selectbox(
|
||||
f"Missing values of {column} ({missing_count})",
|
||||
choices,
|
||||
index=1,
|
||||
@@ -17,6 +18,14 @@ if "data" in st.session_state:
|
||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
choices = ScalingStrategy.list_available(data, series)
|
||||
option = col2.selectbox(
|
||||
"Scaling",
|
||||
choices,
|
||||
key=f"scaling-{column}",
|
||||
)
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
st.write(data)
|
||||
st.session_state.working_data = data
|
||||
else:
|
||||
|
Reference in New Issue
Block a user