Add scaling strategies
This commit is contained in:
@@ -3,16 +3,20 @@ from pandas import DataFrame, Series
|
|||||||
from pandas.api.types import is_numeric_dtype
|
from pandas.api.types import is_numeric_dtype
|
||||||
from typing import Any, Union
|
from typing import Any, Union
|
||||||
|
|
||||||
class MVStrategy(ABC):
|
class DataFrameFunction(ABC):
|
||||||
"""A way to handle missing values in a dataframe."""
|
"""A command that may be applied in-place to a dataframe."""
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
"""Apply the current strategy to the given series.
|
"""Apply the current function to the given dataframe, in-place.
|
||||||
|
|
||||||
The series is described by its label and dataframe."""
|
The series is described by its label and dataframe."""
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
class MVStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||||
"""Get all the strategies that can be used."""
|
"""Get all the strategies that can be used."""
|
||||||
@@ -22,6 +26,20 @@ class MVStrategy(ABC):
|
|||||||
return choices
|
return choices
|
||||||
|
|
||||||
|
|
||||||
|
class ScalingStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||||
|
"""Get all the strategies that can be used."""
|
||||||
|
choices = [KeepStrategy()]
|
||||||
|
if is_numeric_dtype(series):
|
||||||
|
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||||
|
if series.sum() != 0:
|
||||||
|
choices.append(UnitLengthStrategy())
|
||||||
|
return choices
|
||||||
|
|
||||||
|
|
||||||
class DropStrategy(MVStrategy):
|
class DropStrategy(MVStrategy):
|
||||||
#@typing.override
|
#@typing.override
|
||||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
@@ -77,3 +95,44 @@ class LinearRegressionStrategy(MVStrategy):
|
|||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
return "Use linear regression"
|
return "Use linear regression"
|
||||||
|
|
||||||
|
|
||||||
|
class KeepStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "No-op"
|
||||||
|
|
||||||
|
|
||||||
|
class MinMaxStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
minimum = series.min()
|
||||||
|
maximum = series.max()
|
||||||
|
df[label] = (series - minimum) / (maximum - minimum)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Min-max"
|
||||||
|
|
||||||
|
|
||||||
|
class ZScoreStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = (series - series.mean()) / series.std()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Z-Score"
|
||||||
|
|
||||||
|
|
||||||
|
class UnitLengthStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = series / series.sum()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Unit length"
|
@@ -1,14 +1,15 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from mvstrategy import MVStrategy
|
from normstrategy import MVStrategy, ScalingStrategy
|
||||||
|
|
||||||
if "data" in st.session_state:
|
if "data" in st.session_state:
|
||||||
data = st.session_state.data
|
data = st.session_state.data
|
||||||
st.session_state.data = data.copy()
|
st.session_state.data = data.copy()
|
||||||
|
|
||||||
for column, series in data.items():
|
for column, series in data.items():
|
||||||
|
col1, col2 = st.columns(2)
|
||||||
missing_count = series.isna().sum()
|
missing_count = series.isna().sum()
|
||||||
choices = MVStrategy.list_available(data, series)
|
choices = MVStrategy.list_available(data, series)
|
||||||
option = st.selectbox(
|
option = col1.selectbox(
|
||||||
f"Missing values of {column} ({missing_count})",
|
f"Missing values of {column} ({missing_count})",
|
||||||
choices,
|
choices,
|
||||||
index=1,
|
index=1,
|
||||||
@@ -17,6 +18,14 @@ if "data" in st.session_state:
|
|||||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||||
data = option.apply(data, column, data[column])
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
choices = ScalingStrategy.list_available(data, series)
|
||||||
|
option = col2.selectbox(
|
||||||
|
"Scaling",
|
||||||
|
choices,
|
||||||
|
key=f"scaling-{column}",
|
||||||
|
)
|
||||||
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
st.write(data)
|
st.write(data)
|
||||||
st.session_state.working_data = data
|
st.session_state.working_data = data
|
||||||
else:
|
else:
|
||||||
|
Reference in New Issue
Block a user