12 Commits

Author SHA1 Message Date
hugo.pradier2
089cc66042 correctifs 2024-06-21 14:51:06 +02:00
hugo.pradier2
2d1c867bed ajout prediction classification 2024-06-21 14:46:04 +02:00
hugo.pradier2
a914c3f8f9 prediction de regression terminee 2024-06-21 14:46:04 +02:00
hugo.pradier2
70641ebca4 debut prediction 2024-06-21 14:45:44 +02:00
Bastien OLLIER
e5f05a2c8a Mise à jour de 'frontend/pages/clustering_kmeans.py' 2024-06-21 14:41:44 +02:00
Bastien OLLIER
972fde561f Mise à jour de 'frontend/pages/clustering_dbscan.py' 2024-06-21 14:41:28 +02:00
Bastien OLLIER
694ecd0eef Merge pull request 'Visualize clusters in 3d' (#6) from cluster3d into main
Reviewed-on: https://codefirst.iut.uca.fr/git/clement.freville2/miner/pulls/6
Reviewed-by: Clément FRÉVILLE <clement.freville2@etu.uca.fr>
2024-06-21 13:49:12 +02:00
Bastien OLLIER
e255c67972 Merge pull request 'Implement base missing values strategies' (#3) from feature/missing-values into main
Reviewed-on: https://codefirst.iut.uca.fr/git/clement.freville2/miner/pulls/3
Reviewed-by: Bastien OLLIER <bastien.ollier@noreply.codefirst.iut.uca.fr>
2024-06-21 13:41:42 +02:00
6dcca29cbd Rename to original_data 2024-06-19 09:49:16 +02:00
a325603fd9 Add scaling strategies 2024-06-19 09:04:39 +02:00
5f960df838 Support Pandas linear regression 2024-06-07 11:58:52 +02:00
63bce82b3b Implement base MissingValues strategies 2024-06-07 11:00:21 +02:00
8 changed files with 266 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
__pycache__
.venv

View File

@@ -13,6 +13,7 @@ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
if uploaded_file is not None:
st.session_state.data = pd.read_csv(uploaded_file)
st.session_state.original_data = st.session_state.data
st.success("File loaded successfully!")

138
frontend/normstrategy.py Normal file
View File

@@ -0,0 +1,138 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from typing import Any, Union
class DataFrameFunction(ABC):
"""A command that may be applied in-place to a dataframe."""
@abstractmethod
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
"""Apply the current function to the given dataframe, in-place.
The series is described by its label and dataframe."""
return df
class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
return choices
class ScalingStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [KeepStrategy()]
if is_numeric_dtype(series):
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
if series.sum() != 0:
choices.append(UnitLengthStrategy())
return choices
class DropStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df.dropna(subset=label, inplace=True)
return df
def __str__(self) -> str:
return "Drop"
class PositionStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.fillna(self.get_value(series), inplace=True)
return df
@abstractmethod
def get_value(self, series: Series) -> Any:
pass
class MeanStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.mean()
def __str__(self) -> str:
return "Use mean"
class MedianStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.median()
def __str__(self) -> str:
return "Use median"
class ModeStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Any:
return series.mode()[0]
def __str__(self) -> str:
return "Use mode"
class LinearRegressionStrategy(MVStrategy):
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.interpolate(inplace=True)
return df
def __str__(self) -> str:
return "Use linear regression"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
return df
def __str__(self) -> str:
return "No-op"
class MinMaxStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
minimum = series.min()
maximum = series.max()
df[label] = (series - minimum) / (maximum - minimum)
return df
def __str__(self) -> str:
return "Min-max"
class ZScoreStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = (series - series.mean()) / series.std()
return df
def __str__(self) -> str:
return "Z-Score"
class UnitLengthStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = series / series.sum()
return df
def __str__(self) -> str:
return "Unit length"

View File

@@ -0,0 +1,32 @@
import streamlit as st
from normstrategy import MVStrategy, ScalingStrategy
if "data" in st.session_state:
data = st.session_state.original_data
st.session_state.original_data = data.copy()
for column, series in data.items():
col1, col2 = st.columns(2)
missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, series)
option = col1.selectbox(
f"Missing values of {column} ({missing_count})",
choices,
index=1,
key=f"mv-{column}",
)
# Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column])
choices = ScalingStrategy.list_available(data, series)
option = col2.selectbox(
"Scaling",
choices,
key=f"scaling-{column}",
)
data = option.apply(data, column, data[column])
st.write(data)
st.session_state.data = data
else:
st.error("file not loaded")

View File

@@ -0,0 +1,64 @@
import streamlit as st
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
import pandas as pd
st.header("Prediction: Classification")
if "data" in st.session_state:
data = st.session_state.data
with st.form("classification_form"):
st.subheader("Classification Parameters")
data_name = st.multiselect("Features", data.columns)
target_name = st.selectbox("Target", data.columns)
test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
label_encoders = {}
for column in X.select_dtypes(include=['object']).columns:
le = LabelEncoder()
X[column] = le.fit_transform(X[column])
label_encoders[column] = le
if y.dtype == 'object':
le = LabelEncoder()
y = le.fit_transform(y)
label_encoders[target_name] = le
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
st.subheader("Model Accuracy")
st.write(f"Accuracy on test data: {accuracy:.2f}")
st.subheader("Enter values for prediction")
pred_values = []
for feature in data_name:
if feature in label_encoders:
values = list(label_encoders[feature].classes_)
value = st.selectbox(f"Value for {feature}", values)
value_encoded = label_encoders[feature].transform([value])[0]
pred_values.append(value_encoded)
else:
value = st.number_input(f"Value for {feature}", value=0.0)
pred_values.append(value)
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
if target_name in label_encoders:
prediction = label_encoders[target_name].inverse_transform(prediction)
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")

View File

@@ -0,0 +1,29 @@
import streamlit as st
from sklearn.linear_model import LinearRegression
import pandas as pd
st.header("Prediction: Regression")
if "data" in st.session_state:
data = st.session_state.data
with st.form("regression_form"):
st.subheader("Linear Regression Parameters")
data_name = st.multiselect("Features", data.select_dtypes(include="number").columns)
target_name = st.selectbox("Target", data.select_dtypes(include="number").columns)
st.form_submit_button('Train and Predict')
if data_name and target_name:
X = data[data_name]
y = data[target_name]
model = LinearRegression()
model.fit(X, y)
st.subheader("Enter values for prediction")
pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name]
prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))
st.write("Prediction:", prediction[0])
else:
st.error("File not loaded")