Compare commits
10 Commits
Author | SHA1 | Date | |
---|---|---|---|
06adc742eb | |||
cd0c85ea44 | |||
![]() |
e5f05a2c8a | ||
![]() |
972fde561f | ||
![]() |
694ecd0eef | ||
![]() |
e255c67972 | ||
6dcca29cbd | |||
a325603fd9 | |||
5f960df838 | |||
63bce82b3b |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
__pycache__
|
@@ -13,6 +13,7 @@ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
|||||||
|
|
||||||
if uploaded_file is not None:
|
if uploaded_file is not None:
|
||||||
st.session_state.data = pd.read_csv(uploaded_file)
|
st.session_state.data = pd.read_csv(uploaded_file)
|
||||||
|
st.session_state.original_data = st.session_state.data
|
||||||
st.success("File loaded successfully!")
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
|
||||||
|
179
frontend/normstrategy.py
Normal file
179
frontend/normstrategy.py
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from pandas import DataFrame, Series
|
||||||
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
from typing import Any, Union
|
||||||
|
|
||||||
|
class DataFrameFunction(ABC):
|
||||||
|
"""A command that may be applied in-place to a dataframe."""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
"""Apply the current function to the given dataframe, in-place.
|
||||||
|
|
||||||
|
The series is described by its label and dataframe."""
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
class MVStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
||||||
|
"""Get all the strategies that can be used."""
|
||||||
|
choices = [DropStrategy(), ModeStrategy()]
|
||||||
|
if is_numeric_dtype(series):
|
||||||
|
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||||
|
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
||||||
|
if len(other_columns):
|
||||||
|
choices.append(KNNStrategy(other_columns))
|
||||||
|
return choices
|
||||||
|
|
||||||
|
|
||||||
|
class ScalingStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||||
|
"""Get all the strategies that can be used."""
|
||||||
|
choices = [KeepStrategy()]
|
||||||
|
if is_numeric_dtype(series):
|
||||||
|
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||||
|
if series.sum() != 0:
|
||||||
|
choices.append(UnitLengthStrategy())
|
||||||
|
return choices
|
||||||
|
|
||||||
|
|
||||||
|
class DropStrategy(MVStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df.dropna(subset=label, inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Drop"
|
||||||
|
|
||||||
|
|
||||||
|
class PositionStrategy(MVStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
series.fillna(self.get_value(series), inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_value(self, series: Series) -> Any:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class MeanStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Union[int, float]:
|
||||||
|
return series.mean()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use mean"
|
||||||
|
|
||||||
|
|
||||||
|
class MedianStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Union[int, float]:
|
||||||
|
return series.median()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use median"
|
||||||
|
|
||||||
|
|
||||||
|
class ModeStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Any:
|
||||||
|
return series.mode()[0]
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use mode"
|
||||||
|
|
||||||
|
|
||||||
|
class LinearRegressionStrategy(MVStrategy):
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
series.interpolate(inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use linear regression"
|
||||||
|
|
||||||
|
|
||||||
|
class KNNStrategy(MVStrategy):
|
||||||
|
def __init__(self, training_features: list[str]):
|
||||||
|
self.available_features = training_features
|
||||||
|
self.training_features = training_features
|
||||||
|
self.n_neighbors = 3
|
||||||
|
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
# Remove any training column that have any missing values
|
||||||
|
usable_data = df.dropna(subset=self.training_features)
|
||||||
|
# Select columns to impute from
|
||||||
|
train_data = usable_data.dropna(subset=label)
|
||||||
|
# Create train dataframe
|
||||||
|
x_train = train_data.drop(label, axis=1)
|
||||||
|
y_train = train_data[label]
|
||||||
|
|
||||||
|
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
||||||
|
|
||||||
|
# Create test dataframe
|
||||||
|
test_data = usable_data[usable_data[label].isnull()]
|
||||||
|
if test_data.empty:
|
||||||
|
return df
|
||||||
|
x_test = test_data.drop(label, axis=1)
|
||||||
|
predicted = reg.predict(x_test)
|
||||||
|
|
||||||
|
# Fill with predicated values and patch the original data
|
||||||
|
usable_data[label].fillna(Series(predicted), inplace=True)
|
||||||
|
df.fillna(usable_data, inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def count_max(self, df: DataFrame, label: str) -> int:
|
||||||
|
usable_data = df.dropna(subset=self.training_features)
|
||||||
|
return usable_data[label].count()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "kNN"
|
||||||
|
|
||||||
|
|
||||||
|
class KeepStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "No-op"
|
||||||
|
|
||||||
|
|
||||||
|
class MinMaxStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
minimum = series.min()
|
||||||
|
maximum = series.max()
|
||||||
|
df[label] = (series - minimum) / (maximum - minimum)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Min-max"
|
||||||
|
|
||||||
|
|
||||||
|
class ZScoreStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = (series - series.mean()) / series.std()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Z-Score"
|
||||||
|
|
||||||
|
|
||||||
|
class UnitLengthStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = series / series.sum()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Unit length"
|
35
frontend/pages/normalization.py
Normal file
35
frontend/pages/normalization.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from normstrategy import MVStrategy, ScalingStrategy, KNNStrategy
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.original_data
|
||||||
|
st.session_state.original_data = data.copy()
|
||||||
|
|
||||||
|
for column, series in data.items():
|
||||||
|
col1, col2 = st.columns(2)
|
||||||
|
missing_count = series.isna().sum()
|
||||||
|
choices = MVStrategy.list_available(data, column, series)
|
||||||
|
option = col1.selectbox(
|
||||||
|
f"Missing values of {column} ({missing_count})",
|
||||||
|
choices,
|
||||||
|
index=1,
|
||||||
|
key=f"mv-{column}",
|
||||||
|
)
|
||||||
|
if isinstance(option, KNNStrategy):
|
||||||
|
option.training_features = st.multiselect("Training columns", option.training_features, default=option.available_features, key=f"cols-{column}")
|
||||||
|
option.n_neighbors = st.number_input("Number of neighbors", min_value=1, max_value=option.count_max(data, column), value=option.n_neighbors, key=f"neighbors-{column}")
|
||||||
|
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||||
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
choices = ScalingStrategy.list_available(data, series)
|
||||||
|
option = col2.selectbox(
|
||||||
|
"Scaling",
|
||||||
|
choices,
|
||||||
|
key=f"scaling-{column}",
|
||||||
|
)
|
||||||
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
st.write(data)
|
||||||
|
st.session_state.data = data
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
Reference in New Issue
Block a user