Compare commits
6 Commits
visualisat
...
feature/mi
Author | SHA1 | Date | |
---|---|---|---|
6dcca29cbd | |||
a325603fd9 | |||
5f960df838 | |||
63bce82b3b | |||
![]() |
ba1aef5727 | ||
![]() |
440265faaa |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
__pycache__
|
48
frontend/exploration.py
Normal file
48
frontend/exploration.py
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import streamlit as st
|
||||||
|
|
||||||
|
st.set_page_config(
|
||||||
|
page_title="Project Miner",
|
||||||
|
layout="wide"
|
||||||
|
)
|
||||||
|
|
||||||
|
st.title("Home")
|
||||||
|
|
||||||
|
### Exploration
|
||||||
|
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||||
|
|
||||||
|
if uploaded_file is not None:
|
||||||
|
st.session_state.data = pd.read_csv(uploaded_file)
|
||||||
|
st.session_state.original_data = st.session_state.data
|
||||||
|
st.success("File loaded successfully!")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
st.write(data.head(10))
|
||||||
|
st.write(data.tail(10))
|
||||||
|
|
||||||
|
st.header("Data Preview")
|
||||||
|
|
||||||
|
st.subheader("First 5 Rows")
|
||||||
|
st.write(data.head())
|
||||||
|
|
||||||
|
st.subheader("Last 5 Rows")
|
||||||
|
st.write(data.tail())
|
||||||
|
|
||||||
|
st.header("Data Summary")
|
||||||
|
|
||||||
|
st.subheader("Basic Information")
|
||||||
|
col1, col2 = st.columns(2)
|
||||||
|
col1.metric("Number of Rows", data.shape[0])
|
||||||
|
col2.metric("Number of Columns", data.shape[1])
|
||||||
|
|
||||||
|
st.write(f"Column Names: {list(data.columns)}")
|
||||||
|
|
||||||
|
st.subheader("Missing Values by Column")
|
||||||
|
missing_values = data.isnull().sum()
|
||||||
|
st.write(missing_values)
|
||||||
|
|
||||||
|
st.subheader("Statistical Summary")
|
||||||
|
st.write(data.describe())
|
||||||
|
|
@@ -1,64 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import streamlit as st
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
from pandas.api.types import is_numeric_dtype
|
|
||||||
|
|
||||||
st.set_page_config(
|
|
||||||
page_title="Project Miner",
|
|
||||||
layout="wide"
|
|
||||||
)
|
|
||||||
|
|
||||||
### Exploration
|
|
||||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
|
||||||
|
|
||||||
if uploaded_file:
|
|
||||||
data = pd.read_csv(uploaded_file)
|
|
||||||
st.success("File loaded successfully!")
|
|
||||||
|
|
||||||
st.header("Data Preview")
|
|
||||||
|
|
||||||
st.subheader("First 5 Rows")
|
|
||||||
st.write(data.head())
|
|
||||||
|
|
||||||
st.subheader("Last 5 Rows")
|
|
||||||
st.write(data.tail())
|
|
||||||
|
|
||||||
st.header("Data Summary")
|
|
||||||
|
|
||||||
st.subheader("Basic Information")
|
|
||||||
col1, col2 = st.columns(2)
|
|
||||||
col1.metric("Number of Rows", data.shape[0])
|
|
||||||
col2.metric("Number of Columns", data.shape[1])
|
|
||||||
|
|
||||||
st.write(f"Column Names: {list(data.columns)}")
|
|
||||||
|
|
||||||
st.subheader("Missing Values by Column")
|
|
||||||
missing_values = data.isnull().sum()
|
|
||||||
st.write(missing_values)
|
|
||||||
|
|
||||||
st.subheader("Statistical Summary")
|
|
||||||
st.write(data.describe())
|
|
||||||
|
|
||||||
### Visualization
|
|
||||||
|
|
||||||
st.header("Data Visualization")
|
|
||||||
|
|
||||||
st.subheader("Histogram")
|
|
||||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
|
||||||
if column_to_plot:
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
|
||||||
ax.set_title(f'Histogram of {column_to_plot}')
|
|
||||||
ax.set_xlabel(column_to_plot)
|
|
||||||
ax.set_ylabel('Frequency')
|
|
||||||
st.pyplot(fig)
|
|
||||||
|
|
||||||
st.subheader("Boxplot")
|
|
||||||
dataNumeric = data.select_dtypes(include='number')
|
|
||||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
|
||||||
if column_to_plot:
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
|
||||||
ax.set_title(f'Boxplot of {column_to_plot}')
|
|
||||||
st.pyplot(fig)
|
|
138
frontend/normstrategy.py
Normal file
138
frontend/normstrategy.py
Normal file
@@ -0,0 +1,138 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from pandas import DataFrame, Series
|
||||||
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
from typing import Any, Union
|
||||||
|
|
||||||
|
class DataFrameFunction(ABC):
|
||||||
|
"""A command that may be applied in-place to a dataframe."""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
"""Apply the current function to the given dataframe, in-place.
|
||||||
|
|
||||||
|
The series is described by its label and dataframe."""
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
class MVStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||||
|
"""Get all the strategies that can be used."""
|
||||||
|
choices = [DropStrategy(), ModeStrategy()]
|
||||||
|
if is_numeric_dtype(series):
|
||||||
|
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||||
|
return choices
|
||||||
|
|
||||||
|
|
||||||
|
class ScalingStrategy(DataFrameFunction):
|
||||||
|
"""A way to handle missing values in a dataframe."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||||
|
"""Get all the strategies that can be used."""
|
||||||
|
choices = [KeepStrategy()]
|
||||||
|
if is_numeric_dtype(series):
|
||||||
|
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||||
|
if series.sum() != 0:
|
||||||
|
choices.append(UnitLengthStrategy())
|
||||||
|
return choices
|
||||||
|
|
||||||
|
|
||||||
|
class DropStrategy(MVStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df.dropna(subset=label, inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Drop"
|
||||||
|
|
||||||
|
|
||||||
|
class PositionStrategy(MVStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
series.fillna(self.get_value(series), inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_value(self, series: Series) -> Any:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class MeanStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Union[int, float]:
|
||||||
|
return series.mean()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use mean"
|
||||||
|
|
||||||
|
|
||||||
|
class MedianStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Union[int, float]:
|
||||||
|
return series.median()
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use median"
|
||||||
|
|
||||||
|
|
||||||
|
class ModeStrategy(PositionStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def get_value(self, series: Series) -> Any:
|
||||||
|
return series.mode()[0]
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use mode"
|
||||||
|
|
||||||
|
|
||||||
|
class LinearRegressionStrategy(MVStrategy):
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
series.interpolate(inplace=True)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Use linear regression"
|
||||||
|
|
||||||
|
|
||||||
|
class KeepStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "No-op"
|
||||||
|
|
||||||
|
|
||||||
|
class MinMaxStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
minimum = series.min()
|
||||||
|
maximum = series.max()
|
||||||
|
df[label] = (series - minimum) / (maximum - minimum)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Min-max"
|
||||||
|
|
||||||
|
|
||||||
|
class ZScoreStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = (series - series.mean()) / series.std()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Z-Score"
|
||||||
|
|
||||||
|
|
||||||
|
class UnitLengthStrategy(ScalingStrategy):
|
||||||
|
#@typing.override
|
||||||
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||||
|
df[label] = series / series.sum()
|
||||||
|
return df
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return "Unit length"
|
32
frontend/pages/normalization.py
Normal file
32
frontend/pages/normalization.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import streamlit as st
|
||||||
|
from normstrategy import MVStrategy, ScalingStrategy
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.original_data
|
||||||
|
st.session_state.original_data = data.copy()
|
||||||
|
|
||||||
|
for column, series in data.items():
|
||||||
|
col1, col2 = st.columns(2)
|
||||||
|
missing_count = series.isna().sum()
|
||||||
|
choices = MVStrategy.list_available(data, series)
|
||||||
|
option = col1.selectbox(
|
||||||
|
f"Missing values of {column} ({missing_count})",
|
||||||
|
choices,
|
||||||
|
index=1,
|
||||||
|
key=f"mv-{column}",
|
||||||
|
)
|
||||||
|
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||||
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
choices = ScalingStrategy.list_available(data, series)
|
||||||
|
option = col2.selectbox(
|
||||||
|
"Scaling",
|
||||||
|
choices,
|
||||||
|
key=f"scaling-{column}",
|
||||||
|
)
|
||||||
|
data = option.apply(data, column, data[column])
|
||||||
|
|
||||||
|
st.write(data)
|
||||||
|
st.session_state.data = data
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
30
frontend/pages/visualization.py
Normal file
30
frontend/pages/visualization.py
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
import streamlit as st
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
st.header("Data Visualization")
|
||||||
|
|
||||||
|
|
||||||
|
if "data" in st.session_state:
|
||||||
|
data = st.session_state.data
|
||||||
|
|
||||||
|
st.subheader("Histogram")
|
||||||
|
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||||
|
if column_to_plot:
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||||
|
ax.set_title(f"Histogram of {column_to_plot}")
|
||||||
|
ax.set_xlabel(column_to_plot)
|
||||||
|
ax.set_ylabel("Frequency")
|
||||||
|
st.pyplot(fig)
|
||||||
|
|
||||||
|
st.subheader("Boxplot")
|
||||||
|
dataNumeric = data.select_dtypes(include="number")
|
||||||
|
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||||
|
if column_to_plot:
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||||
|
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||||
|
st.pyplot(fig)
|
||||||
|
else:
|
||||||
|
st.error("file not loaded")
|
Reference in New Issue
Block a user