Compare commits
6 Commits
visualisat
...
feature/mi
Author | SHA1 | Date | |
---|---|---|---|
6dcca29cbd | |||
a325603fd9 | |||
5f960df838 | |||
63bce82b3b | |||
![]() |
ba1aef5727 | ||
![]() |
440265faaa |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
__pycache__
|
48
frontend/exploration.py
Normal file
48
frontend/exploration.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
layout="wide"
|
||||
)
|
||||
|
||||
st.title("Home")
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
|
||||
if uploaded_file is not None:
|
||||
st.session_state.data = pd.read_csv(uploaded_file)
|
||||
st.session_state.original_data = st.session_state.data
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
st.write(data.head(10))
|
||||
st.write(data.tail(10))
|
||||
|
||||
st.header("Data Preview")
|
||||
|
||||
st.subheader("First 5 Rows")
|
||||
st.write(data.head())
|
||||
|
||||
st.subheader("Last 5 Rows")
|
||||
st.write(data.tail())
|
||||
|
||||
st.header("Data Summary")
|
||||
|
||||
st.subheader("Basic Information")
|
||||
col1, col2 = st.columns(2)
|
||||
col1.metric("Number of Rows", data.shape[0])
|
||||
col2.metric("Number of Columns", data.shape[1])
|
||||
|
||||
st.write(f"Column Names: {list(data.columns)}")
|
||||
|
||||
st.subheader("Missing Values by Column")
|
||||
missing_values = data.isnull().sum()
|
||||
st.write(missing_values)
|
||||
|
||||
st.subheader("Statistical Summary")
|
||||
st.write(data.describe())
|
||||
|
@@ -1,64 +0,0 @@
|
||||
import pandas as pd
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
|
||||
st.set_page_config(
|
||||
page_title="Project Miner",
|
||||
layout="wide"
|
||||
)
|
||||
|
||||
### Exploration
|
||||
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
||||
|
||||
if uploaded_file:
|
||||
data = pd.read_csv(uploaded_file)
|
||||
st.success("File loaded successfully!")
|
||||
|
||||
st.header("Data Preview")
|
||||
|
||||
st.subheader("First 5 Rows")
|
||||
st.write(data.head())
|
||||
|
||||
st.subheader("Last 5 Rows")
|
||||
st.write(data.tail())
|
||||
|
||||
st.header("Data Summary")
|
||||
|
||||
st.subheader("Basic Information")
|
||||
col1, col2 = st.columns(2)
|
||||
col1.metric("Number of Rows", data.shape[0])
|
||||
col2.metric("Number of Columns", data.shape[1])
|
||||
|
||||
st.write(f"Column Names: {list(data.columns)}")
|
||||
|
||||
st.subheader("Missing Values by Column")
|
||||
missing_values = data.isnull().sum()
|
||||
st.write(missing_values)
|
||||
|
||||
st.subheader("Statistical Summary")
|
||||
st.write(data.describe())
|
||||
|
||||
### Visualization
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f'Histogram of {column_to_plot}')
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel('Frequency')
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include='number')
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f'Boxplot of {column_to_plot}')
|
||||
st.pyplot(fig)
|
138
frontend/normstrategy.py
Normal file
138
frontend/normstrategy.py
Normal file
@@ -0,0 +1,138 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
from typing import Any, Union
|
||||
|
||||
class DataFrameFunction(ABC):
|
||||
"""A command that may be applied in-place to a dataframe."""
|
||||
|
||||
@abstractmethod
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
"""Apply the current function to the given dataframe, in-place.
|
||||
|
||||
The series is described by its label and dataframe."""
|
||||
return df
|
||||
|
||||
|
||||
class MVStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [DropStrategy(), ModeStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
||||
return choices
|
||||
|
||||
|
||||
class ScalingStrategy(DataFrameFunction):
|
||||
"""A way to handle missing values in a dataframe."""
|
||||
|
||||
@staticmethod
|
||||
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
||||
"""Get all the strategies that can be used."""
|
||||
choices = [KeepStrategy()]
|
||||
if is_numeric_dtype(series):
|
||||
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
||||
if series.sum() != 0:
|
||||
choices.append(UnitLengthStrategy())
|
||||
return choices
|
||||
|
||||
|
||||
class DropStrategy(MVStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df.dropna(subset=label, inplace=True)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Drop"
|
||||
|
||||
|
||||
class PositionStrategy(MVStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
series.fillna(self.get_value(series), inplace=True)
|
||||
return df
|
||||
|
||||
@abstractmethod
|
||||
def get_value(self, series: Series) -> Any:
|
||||
pass
|
||||
|
||||
|
||||
class MeanStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Union[int, float]:
|
||||
return series.mean()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use mean"
|
||||
|
||||
|
||||
class MedianStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Union[int, float]:
|
||||
return series.median()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use median"
|
||||
|
||||
|
||||
class ModeStrategy(PositionStrategy):
|
||||
#@typing.override
|
||||
def get_value(self, series: Series) -> Any:
|
||||
return series.mode()[0]
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use mode"
|
||||
|
||||
|
||||
class LinearRegressionStrategy(MVStrategy):
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
series.interpolate(inplace=True)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Use linear regression"
|
||||
|
||||
|
||||
class KeepStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "No-op"
|
||||
|
||||
|
||||
class MinMaxStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
minimum = series.min()
|
||||
maximum = series.max()
|
||||
df[label] = (series - minimum) / (maximum - minimum)
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Min-max"
|
||||
|
||||
|
||||
class ZScoreStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = (series - series.mean()) / series.std()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Z-Score"
|
||||
|
||||
|
||||
class UnitLengthStrategy(ScalingStrategy):
|
||||
#@typing.override
|
||||
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
||||
df[label] = series / series.sum()
|
||||
return df
|
||||
|
||||
def __str__(self) -> str:
|
||||
return "Unit length"
|
32
frontend/pages/normalization.py
Normal file
32
frontend/pages/normalization.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import streamlit as st
|
||||
from normstrategy import MVStrategy, ScalingStrategy
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.original_data
|
||||
st.session_state.original_data = data.copy()
|
||||
|
||||
for column, series in data.items():
|
||||
col1, col2 = st.columns(2)
|
||||
missing_count = series.isna().sum()
|
||||
choices = MVStrategy.list_available(data, series)
|
||||
option = col1.selectbox(
|
||||
f"Missing values of {column} ({missing_count})",
|
||||
choices,
|
||||
index=1,
|
||||
key=f"mv-{column}",
|
||||
)
|
||||
# Always re-get the series to avoid reusing an invalidated series pointer
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
choices = ScalingStrategy.list_available(data, series)
|
||||
option = col2.selectbox(
|
||||
"Scaling",
|
||||
choices,
|
||||
key=f"scaling-{column}",
|
||||
)
|
||||
data = option.apply(data, column, data[column])
|
||||
|
||||
st.write(data)
|
||||
st.session_state.data = data
|
||||
else:
|
||||
st.error("file not loaded")
|
30
frontend/pages/visualization.py
Normal file
30
frontend/pages/visualization.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import streamlit as st
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
st.header("Data Visualization")
|
||||
|
||||
|
||||
if "data" in st.session_state:
|
||||
data = st.session_state.data
|
||||
|
||||
st.subheader("Histogram")
|
||||
column_to_plot = st.selectbox("Select Column for Histogram", data.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
ax.hist(data[column_to_plot].dropna(), bins=20, edgecolor='k')
|
||||
ax.set_title(f"Histogram of {column_to_plot}")
|
||||
ax.set_xlabel(column_to_plot)
|
||||
ax.set_ylabel("Frequency")
|
||||
st.pyplot(fig)
|
||||
|
||||
st.subheader("Boxplot")
|
||||
dataNumeric = data.select_dtypes(include="number")
|
||||
column_to_plot = st.selectbox("Select Column for Boxplot", dataNumeric.columns)
|
||||
if column_to_plot:
|
||||
fig, ax = plt.subplots()
|
||||
sns.boxplot(data=data, x=column_to_plot, ax=ax)
|
||||
ax.set_title(f"Boxplot of {column_to_plot}")
|
||||
st.pyplot(fig)
|
||||
else:
|
||||
st.error("file not loaded")
|
Reference in New Issue
Block a user